Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > High-performance self-assembled catalyst for SOFC

This is the process of alloy exsolution.

CREDIT
UNIST
This is the process of alloy exsolution. CREDIT UNIST

Abstract:
A recent study, affiliated with UNIST has introduced a novel catalyst that can significantly enhance the performance of perovskite electrodes in Solid Oxide Fuel Cell (SOFC).

High-performance self-assembled catalyst for SOFC

Daejeon, Korea | Posted on October 12th, 2018

This breakthrough has been led by Professor Gunatae Kim in the School of Energy and Chemical Engineering at UNIST in collaboration with Professor Jeeyoung Shin of Sukmyeong Women's University, Jeong Woo Hn of Seoul University, and Professor Hu Young Jeong of UCRF at UNIST. The new catalyst forms an alloy in which the internal material of the fuel cell rises to the surface during the operation of the fuel cell. Because of this, it does not break even if you use the hydrocarbon directly, and maintains the performance.

This study was the first to report 'the phenomenon that catalytic materials make alloys themselves to improve reaction efficiency'. The findings of this study has been selected as the front cover of the September 2018 issue of the Journal of Materials Chemistry A, as well as for the 2018 Journal of Materials Chemistry A Hot Papers.

Solid oxide fuel cells (SOFCs) have the potential to become the next major breakthrough as an alternative energy conversion device. One great appeal of SOFC is that it promises more efficient use of abundant, inexpensive natural gas, permitting less overall carbon dioxide emissions than traditional combustion turbines. They use the simple reaction of combining hydrogen and oxygen to produce electricity and water as a by-product.

One of the major challenges to developing affordable hydrogen fuel cells has been storage. This is because Hydrogen is explosive and requires costly containers to hold it safely. As a result, there has been a great increase in the development of SOFCs, using hydrocarbons, such as shale gas, natural gas, methane, propane and butane gas.

However, if the catalysts used in conventional SOFCs use hydrocarbon-based fuels, their performance will drop drastically. This is because the surface of the catalyst is contaminated with carbon or sulfur contained in the hydrocarbon-based fuel, thereby deteriorating performance. To address this, additional processes were needed to add catalyst-enhancing materials.

The research team has solved the problem with a new catalyst, designed with a layered perovskite structure. At the core of this research is to build a bi-layer perovskite structure (cobalt, nickel) that helps the chemical reactions necessary for electrical production, and when the fuel cell operates, it forms itself by itself.

"Cobalt and nickel are known to be effective catalytic materials for the operation of SOFCs," says Ohhun Kwon in the Combined M.S./Ph.D. of Energy and Chemical Engineering at UNIST, the first author of this study. "Previously, these materials were added to make the electrodes, while the new catalysts remained in performance as they formed a "cobalt-nickel alloy."

In fact, the catalysts developed by the researchers used methane gas directly as a fuel and operated stably with no current drop for more than 500 hours. It is also confirmed that the reaction efficiency of the catalyst is four times higher than that of the previously reported catalyst.

"The existing SOFC anode material (catalyst) was not able to operate reliably for a long time even though it showed high performance initially when using hydrocarbon fuel directly," says Professor Kim who led the entire research. The newly developed metal alloy catalyst has excellent catalytic performance Which will greatly contribute to the popularization of fuel cells. "

###

The findings of this study have been supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)

Journal Reference

Ohhun Kwon, et al., "Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells", Journal of Materials Chemistry A, (2018).

####

For more information, please click here

Contacts:
JooHyeon Heo

82-522-171-223

Copyright © Ulsan National Institute of Science and Technology (UNIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

January 18th, 2019

Perovskites

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Chemistry

Chirality in 'real-time' January 14th, 2019

Chemical synthesis of nanotubes: Nanometer-sized tubes made from simple benzene molecules January 11th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Possible Futures

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Self Assembly

January 18th, 2019

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Discoveries

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

January 18th, 2019

Announcements

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Energy

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Physicists uncover new competing state of matter in superconducting material January 4th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Disordered crystals are promising for future battery technology December 21st, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Fuel Cells

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project