Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator

Illustration showing an array of microring resonators on a chip converting laser light into frequency combs.

Credit: Brian Stern/Columbia Engineering
Illustration showing an array of microring resonators on a chip converting laser light into frequency combs. Credit: Brian Stern/Columbia Engineering

Abstract:
Low-power chip unites lasers and frequency combs for the first time and can be powered by an AAA battery, opening the door to portable devices for a wide range of applications from spectroscopy to optical communications to LIDAR

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator

New York, NY | Posted on October 9th, 2018

Optical frequency combs can enable ultrafast processes in physics, biology, and chemistry, as well as improve communication and navigation, medical testing, and security. The Nobel Prize in Physics 2005 was awarded to the developers of laser-based precision spectroscopy, including the optical frequency comb technique, and microresonator combs have become an intense focus of research over the past decade.

A major challenge has been how to make such comb sources smaller and more robust and portable. In the past 10 years, major advances have been made in the use of monolithic, chip-based microresonators to produce such combs. While the microresonators generating the frequency combs are tiny—smaller than a human hair—they have always relied on external lasers that are often much larger, expensive, and power-hungry.

Researchers at Columbia Engineering announced today in Nature that they have built a Kerr frequency comb generator that, for the first time, integrates the laser together with the microresonator, significantly shrinking the system’s size and power requirements. They designed the laser so that half of the laser cavity is based on a semiconductor waveguide section with high optical gain, while the other half is based on waveguides, made of silicon nitride, a very low-loss material. Their results showed that they no longer need to connect separate devices in the lab using fiber—they can now integrate it all on photonic chips that are compact and energy efficient.



Illustration showing an array of microring resonators on a chip converting laser light into frequency combs.

Credit: Brian Stern/Columbia Engineering



The team knew that the lower the optical loss in the silicon nitride waveguides, the lower the laser power needed to generate a frequency comb. “Figuring out how to eliminate most of the loss in silicon nitride took years of work from many students in our group,” says Michal Lipson, Eugene Higgins Professor of Electrical Engineering, professor of applied physics, and co-leader of the team. “Last year we demonstrated that we could reproducibly achieve very transparent low-loss waveguides. This work was key to reducing the power needed to generate a frequency comb on-chip, which we show in this new paper.”

Microresonators are typically small, round disks or rings made of silicon, glass, or silicon nitride. Bending a waveguide into the shape of a ring creates an optical cavity in which light circulates many times, leading to a large buildup of power. If the ring is properly designed, a single-frequency pump laser input can generate an entire frequency comb in the ring. The Columbia Engineering team made another key innovation: in microresonators with extremely low loss like theirs, light circulates and builds up so much intensity that they could see a strong reflection coming back from the ring.

“We actually placed the microresonator directly at the edge of the laser cavity so that this reflection made the ring act just like one of the laser's mirrors-–the reflection helped to keep the laser perfectly aligned,” says Brian Stern, the study’s lead author who conducted the work as a doctoral student in Lipson’s group. “So, rather than using a standard external laser to pump the frequency comb in a separate microresonator, we now have the freedom to design the laser so that we can make the laser and resonator interact in new ways.”

All of the optics fit in a millimeter-scale area and the researchers say that their novel device is so efficient that even a common AAA battery can power it. “Its compact size and low power requirements open the door to developing portable frequency comb devices,” says Alexander Gaeta, Rickey Professor of Applied Physics and of Materials Science and team co-leader. “They could be used for ultra-precise optical clocks, for laser radar /LIDAR in autonomous cars, or for spectroscopy to sense biological or environmental markers. We are bringing frequency combs from table-top lab experiments closer to portable, or even wearable, devices.”

The researchers plan to apply such devices in various configurations for high precision measurements and sensing. In addition, they will extend these designs for operation in other wavelength ranges, such as the mid-infrared where sensing of chemical and biological agents is highly effective. In cooperation with Columbia Technology Ventures, the team has a provisional patent application and is exploring commercialization of this device.

About the Study

The study is titled “Battery-operated integrated frequency comb generator.”

Authors are: Brian Stern and Xingchen Ji (School of Electrical and Computer Engineering, Cornell University, and Department of Electrical Engineering, Columbia University); Yoshitomo Okawachi and Alexander L. Gaeta (Department of Applied Physics and Applied Mathematics, Columbia University), and Michal Lipson (Department of Electrical Engineering, Columbia University).

This work was supported by AFRL program award number FA8650-17-P-1085; the ARPA-E ENLITENED program (DE-AR0000843); Defense Advanced Research Projects Agency (DARPA) under the Microsystems Technology Office Direct On-Chip Digital Optical Synthesizer (DODOS) program (N66001-16-1-4052) and the Modular Optical Aperture Building Blocks (MOABB) program (HR0011-16-C-0107); the STTR program (N00014-16-P-30); and Air Force Office of Scientific Research (AFOSR) (FA9550-15-1-0303). This work was performed in part at Cornell NanoScale Facility, an NNCI member supported by NSF Grant ECCS-1542081.

The authors declare no financial or other conflicts of interest. The authors have filed a patent with Columbia Technology Ventures.

####

For more information, please click here

Contacts:
Holly Evarts
Director of Strategic Communications and Media Relations
212-854-3206 (o)
347-453-7408 (c)

Copyright © Columbia University School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

180 Degree Capital Corp.’s Portfolio Company, TheStreet, Inc., Agrees to Sell Its Institutional Business Units to Euromoney Institutional Investor PLC for $87.3 Million December 6th, 2018

Wireless/telecommunications/RF/Antennas/Microwaves

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Kavli Lectures: New vision of nanomaterial synthesis and light-fueled space travel August 8th, 2018

Govt.-Legislation/Regulation/Funding/Policy

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

French Researchers Extend Reach of Mass Spectrometry with Nanomechanical Resonators: Neutral Mass Spectrometry’ Fills Gap In Existing Weighing Technologies November 27th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Possible Futures

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Optical computing/Photonic computing

An important step towards completely secure quantum communication networks November 30th, 2018

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

AIM Photonics Members Meeting Provides Key Updates on the Initiative’s Progress: Day-Long Engagement in Syracuse, NY, Sees Strong Attendance and Interest from Industry, Government, and Academic Partners November 2nd, 2018

Sensors

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Discoveries

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Announcements

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

180 Degree Capital Corp.’s Portfolio Company, TheStreet, Inc., Agrees to Sell Its Institutional Business Units to Euromoney Institutional Investor PLC for $87.3 Million December 6th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Military

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Automotive/Transportation

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Research Pioneers: Five UCSB professors are named Fellows of the American Association for the Advancement of Science November 27th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Photonics/Optics/Lasers

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Research partnerships

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Researchers create new 'smart' material with potential biomedical, environmental uses November 23rd, 2018

Cea-Leti and imec Launch Strategic Partnership to Develop AI and Quantum Computing November 23rd, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project