Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device

The novel enVision platform adopts a 'plug-and-play' modular design and uses microfluidic technology to reduce the amount of samples and biochemical reagents required as well as to optimise the technology's sensitivity for visual readouts.

CREDIT
NUS BIGHEART
The novel enVision platform adopts a 'plug-and-play' modular design and uses microfluidic technology to reduce the amount of samples and biochemical reagents required as well as to optimise the technology's sensitivity for visual readouts. CREDIT NUS BIGHEART

Abstract:
A multidisciplinary team of researchers at the National University of Singapore (NUS) has developed a portable, easy-to-use device for quick and accurate screening of diseases. This versatile technology platform called enVision (enzyme-assisted nanocomplexes for visual identification of nucleic acids) can be designed to detect a wide range of diseases - from emerging infectious diseases (e.g. Zika and Ebola) and high-prevalence infections (e.g. hepatitis, dengue, and malaria) to various types of cancers and genetic diseases.

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device

Singapore | Posted on September 19th, 2018

enVision takes between 30 minutes to one hour to detect the presence of diseases, which is two to four times faster than existing infection diagnostics methods. In addition, each test kit costs under S$1 - 100 times lower than the current cost of conducting similar tests.

"The enVision platform is extremely sensitive, accurate, fast, and low-cost. It works at room temperature and does not require heaters or special pumps, making it very portable. With this invention, tests can be done at the point-of-care, for instance in community clinics or hospital wards, so that disease monitoring or treatment can be administered in a timely manner to achieve better health outcomes," said team leader Assistant Professor Shao Huilin from the Biomedical Institute for Global Health Research and Technology (BIGHEART) and Department of Biomedical Engineering at NUS. Asst Prof Shao is also an investigator with the Institute of Molecular and Cell Biology (IMCB) under the Agency for Science, Technology and Research (A*STAR).

Superior sensitivity and specificity compared to clinical gold standard

The research team used the human papillomavirus (HPV), the key cause of cervical cancer, as a clinical model to validate the performance of enVision. In comparison to clinical gold standard, this novel technology has demonstrated superior sensitivity and specificity.

"enVision is not only able to accurately detect different subtypes of the same disease, it is also able to spot differences within a specific subtype of a given disease to identify previously undetectable infections," Asst Prof Shao added.

Bringing the lab to the patient

In addition, test results are easily visible - the assay turns from colourless to brown if a disease is present - and could also be further analysed using a smartphone for quantitative assessment of the amount of pathogen present. This makes enVision an ideal solution for personal healthcare and telemedicine.

"Conventional technologies - such as tests that rely on polymerase chain reaction to amplify and detect specific DNA molecules - require bulky and expensive equipment, as well as trained personnel to operate these machines. With enVision, we are essentially bringing the clinical laboratory to the patient. Minimal training is needed to administer the ,test and interpret the results, so more patients can have access to effective, lab-quality diagnostics that will substantially improve the quality of care and treatment," said Dr Nicholas Ho, a researcher from NUS BIGHEART and A*STAR's IMCB, and co-first author of the study.

Versatile point-of-care diagnostic device

In this study, Asst Prof Shao and her team developed patented DNA molecular machines that can recognise genetic material of different diseases and perform different functions. These molecular machines form the backbone of the enVision platform.

The novel platform adopts a 'plug-and-play' modular design and uses microfluidic technology to reduce the amount of samples and biochemical reagents required as well as to optimise the technology's sensitivity for visual readouts.

"The enVision platform has three key steps - target recognition, target-independent signal enhancement, and visual detection. It employs a unique set of molecular switches, composed of enzyme-DNA nanostructures, to accurately detect, as well as convert and amplify molecular information into visible signals for disease diagnosis," explained Dr Lim Geok Soon, a researcher from NUS BIGHEART and A*STAR's IMCB, and co-first author of the study.

Each test is housed in a tiny plastic chip that is preloaded with a DNA molecular machine that is designed to recognise disease-specific molecules. The chip is then placed in a common signal cartridge that contains another DNA molecular machine responsible for producing visual signals when disease-specific molecules are detected.

Multiple units of the same test chip - to test different patient samples for the same disease - or a collection of test chips to detect different diseases could be mounted onto the common cartridge.

"Having a target-independent signal enhancement step frees up the design possibilities for the recognition element. This allows enVision to be programmed as a biochemical computer with varying signals for different combinations of target pathogens. This can be very useful to monitor populations for multiple diseases like dengue and malaria simultaneously, or testing for highly mutable pathogens like the flu with high sensitivity and specificity," said Dr Ho.

Future work

Asst Prof Shao and her team took about a year and a half to develop the enVision platform. Building on the current work, the research team is developing a sample preparation module - for extraction and treatment of DNA material - to be integrated with the enVision platform to enhance point-of-care application. In addition, the research team foresees that the smartphone app could include more advanced image correction and analysis algorithms to further improve its performance for real-world application.

This research work was published in prestigious scientific journal Nature Communications in August 2018, and featured as an Editors' Highlight by the journal.

####

For more information, please click here

Contacts:
Fun Yip

65-651-61374

Copyright © National University of Singapore

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Possible Futures

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Letiís RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Nanomedicine

A*STAR, One BioMed launch S$9m joint lab to make diagnostic kit for infectious diseases December 3rd, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

Arrowhead Pharmaceuticals to Webcast 2018 Fiscal Year End Results November 27th, 2018

Discoveries

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Announcements

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Nanobiotechnology

A*STAR, One BioMed launch S$9m joint lab to make diagnostic kit for infectious diseases December 3rd, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Arrowhead Pharmaceuticals to Webcast 2018 Fiscal Year End Results November 27th, 2018

How low can we go? Nanopore detection of single flu viruses to control outbreaks: Osaka University-led study shows that label-free digital diagnostics based on nanopore analytics and AI technology can characterize individual virions by their distinct physical features November 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project