Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities

Figure 1: EFI Air Loop Actuator Prototype (200ms response time).

Numerical command and power stage integrated
Figure 1: EFI Air Loop Actuator Prototype (200ms response time). Numerical command and power stage integrated

Abstract:
Leti, a research institute of CEA Tech, and EFI Automotive, a leading international supplier of sensors, actuators and embedded smart modules for the automotive industry, today announced a project to dramatically improve reliability and response time of low-cost automotive components by equipping the devices with sophisticated model predictive control techniques.

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities

Grenoble and Beynost, France | Posted on September 18th, 2018

Model predictive control (MPC) is an advanced method of process control that makes use of a model of the system to predict its behavior. The control law is based on an optimization technique that computes the system inputs, taking into account the reference that the system output has to follow, together with the effort (energy) that is applied on the system inputs and some constraints that may exist within the system, typically saturation of the system inputs.



MPC also allows electronics equipment to perform at levels that are not possible with standard control laws, e.g. proportional-integral-derivative (PID) controllers. But this sophisticated technique is rarely used on low-cost, low-capability computing units, because it requires solving optimization problems under constraints, which is a complex computational task.



Leti and EFI Automotive are evaluating the implementation of MPC on low-cost, low-computational-capability computing platforms, such as microcontrollers or low-cost digital signal processors (DSPs). The goal is to improve the dynamics of the systems considered, because automotive certification is easier when the control law is implemented on a DSP or a microcontroller. An example of EFI Automotive product, which will benefit from the MPC implementation, is the Air Loop Actuator (Figure 1).

“The control community, including academic researchers and process control experts in industry, is trying to make MPC available for these systems by resolving the underlying optimization problem on a low computational-capability computing platform,” said Marie-Sophie Masselot, business development manager, Leti. “This shortcoming usually leads to suboptimal performance for the controlled system. Our project with EFI Automotive will take into account specifics to offset the drop in performance, or response time, introduced when solving the model predictive control problem on this low computational-capability computing platform.”



In addition to transferring its expertise in MPC to EFI Automotive, Leti will develop software-automation tools dedicated to a given problem as a feasibility demonstration for the MPC project, and then make the tools easily expandable to similar control challenges.



For example, Leti and EFI will develop an MPC law for a given system and, with its increased expertise, EFI will expand this control technique to other systems.



“By combining Leti’s MPC expertise with our know-how in real-time processing on low-cost, low-computational capability computing units, we expect to dramatically improve the response time and reliability of our devices that are key to operating today’s complex vehicles,” said Vincent Liebart, innovation engineer at EFI Automotive.

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.



CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.



About EFI Automotive

As a leading Tier 1 and Tier 2 automotive supplier, EFI Automotive offers innovative solutions in the field of sensors, actuators and embedded smart modules, custom designed to match the needs of its major international customers. EFI Automotive invests 8% of its annual turnover in R&D, advancing every day through the efforts of 200 engineers and technicians around the world. This focus on continuous progress helped EFI Automotive achieve almost €200 million in consolidated sales in 2014.

Visit www.efiautomotive.com.

For more information, please click here

Contacts:
Leti Press Contact

Agency

+33 6 74 93 23 47





EFI Automotive Contact

Sybille Castet

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Possible Futures

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Announcements

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer October 25th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

CEA-Leti and Silvaco to Develop GAA SPICE Compact Models for Circuit Design and Technology Co-optimization: Project Combines CEA-Leti’s Compact Modeling Expertise And Silvaco’s Extensive Experience in SPICE Compact Model Integration and Extraction December 3rd, 2018

An important step towards completely secure quantum communication networks November 30th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Research partnerships

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

Researchers create new 'smart' material with potential biomedical, environmental uses November 23rd, 2018

Cea-Leti and imec Launch Strategic Partnership to Develop AI and Quantum Computing November 23rd, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project