Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Peering into private life of atomic clusters -- using the world's tiniest test tubes

Abstract:
Experts in the Nanoscale and Microscale Research Centre (nmRC) at the University of Nottingham have taken a first peak into the private life of atomic clusters. Here's what they can see.

Peering into private life of atomic clusters -- using the world's tiniest test tubes

Nottingham, UK | Posted on September 6th, 2018

Having already succeeded in 'filming' inter-molecular chemical reactions - using the electron beam of a transmission electron microscope (TEM) as a stop-frame imaging tool they have now achieved time-resolved imaging of atomic-scale dynamics and chemical transformations promoted by metal nanoclusters. This has enabled them to rank 14 different metals both in order of their bonding with carbon and their catalytic activity, showing significant variation across the Periodic Table of Elements.

Their latest work, 'Comparison of atomic scale dynamics for the middle and late transition metal nanocatalysts', has been published in Nature Communications. Andrei Khlobystov, Professor of Nanomaterials and Director of nmRC, said: "Thanks to the recent advances in microscopy and spectroscopy we now know a great deal about the behaviour of molecules and atoms. However, the structure and dynamics of atomic-scale clusters of metallic elements remains a mystery. The complex atomic dynamics revealed directly by imaging in real time sheds light on atomistic workings of nanocatalysts."

Contribution to global GDP

The atomic-scale dynamics of metal nanoclusters determine their functional and chemical properties such as catalytic activity - their ability to increase the rate of a chemical reaction. Many key industrial processes currently rely on nanocatalysts such as water purification; fuel cell technologies; energy storage; and bio-diesel production.

Professor Khlobystov said: "With catalytic chemical reactions contributing substantially to the global GDP, understanding the dynamic behaviour of nanoclusters at the atomic level is an important and urgent task. However, the combined challenge of non-uniform structures of nanocatalysts - for example, distribution of sizes, shapes, crystal phases - coexisting within the same material and their highly dynamic nature - nanoclusters undergo extensive structural and, in some cases, chemical transformations during catalysis - makes elucidation of the atomistic mechanisms of their behaviour virtually impossible."

From single-molecule dynamics to atomic clusters

Professor Khlobystov led the Anglo-German collaboration that harnessed the impact of the electron beam (e-beam) in the transmission electron microscopy (TEM) for imaging single-molecule dynamics. By employing the e-beam simultaneously as an imaging tool and a source of energy to drive chemical reactions they succeeded at filming reactions of molecules. The research was published last year in ACS Nano, a flagship nanoscience and nanotechnology journal, and selected as ACS Editor's Choice due to its potential for broad public interest.

Instead of laboratory flasks or test tubes, they employ the World's tiniest test tubes - single walled carbon nanotubes - atomically thin cylinders of carbon with internal diameters of 1-2 nm that have held a Guinness World Record since 2005.

A Periodic Table in a nano test tube

Professor Khlobystov said: "We use these carbon nanotubes to sample tiny clusters of chemical elements, each consisting of only a few dozens of atoms. By entrapping the nanoclusters of a series of related metallic elements we effectively created in a Periodic Table in a nano test tube, allowing a global comparison of chemistry of transition metals across the Periodic Table. This has always been extremely challenging because most metal nanoclusters are highly sensitive to air. The combination of the nano test tube and TEM allows us to watch not only the dynamics of metal nanoclusters but also their bonding with carbon that show a clear link with the metal's position in the Periodic Table."

Ute Kaiser, Professor in Experimental Physics and Leader of the Group of Electron Microscopy of Materials Science at Ulm University said: "Aberration-corrected transmission electron microscopy and the low-dimensional materials, such as nanotubes filled with metal nanoclusters, are an ideal match for each other because they allow an effective combination of advances in analytical and theoretical chemistry with latest developments in electron microscopy, leading to new understanding of phenomena at the atomic scale, such as nanocatalysis in this work."

Watching nanoclusters in unprecedented resolution

Kecheng Cao, PhD student at Ulm University, who carried out image analysis in this study said: "When I am looking at atoms through the microscope, sometimes I stop breathing to see the invisible details we discover for the nanoclusters on our newly developed SALVE III microscope providing unprecedented resolution".

Elena Besley, Professor of Theoretical and Computational Chemistry at the University of Nottingham said: "Reaching inside the tiniest building blocks of metals, this study demonstrated that metal nanoclusters entrapped in carbon nano test tubes provide a universal platform for studying organometallic chemistry and enable a direct comparison of the bonding and reactivity of different transition metals as well as elucidation of the structure-performance relationship for nanocatalysts - vital for the discovery of new reaction mechanisms and more efficient catalysts of the future. This study provides a first qualitative glimpse of a global perspective of metal-carbon bonding."

This study is the latest in a series of more than 20 high-calibre joint papers on the topic of electron microscopy for molecules and nanomaterials published by the Ulm-Nottingham collaboration.

Professor Kaiser has recently been appointed an Honorary Professor at the University of Nottingham in recognition of her rich contribution to the collaboration between the two universities spanning over nearly a decade.

####

For more information, please click here

Contacts:
Lindsay Brooke

01-159-515-751

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project