Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists create antilaser for ultracold atoms condensate

An international team of scientists developed the world's first antilaser for nonlinear Bose-Einstein condensate of ultracold atoms. For the first time, scientists demonstrated that it is possible to absorb the selected signal completely, even though the nonlinear system makes it difficult to predict the waves behaviour. The results can be used to manipulate superfluid flows, create atomic lasers, and also study nonlinear optical systems.

CREDIT
ITMO University
An international team of scientists developed the world's first antilaser for nonlinear Bose-Einstein condensate of ultracold atoms. For the first time, scientists demonstrated that it is possible to absorb the selected signal completely, even though the nonlinear system makes it difficult to predict the waves behaviour. The results can be used to manipulate superfluid flows, create atomic lasers, and also study nonlinear optical systems. CREDIT ITMO University

Abstract:
An international team of scientists developed the world's first antilaser for nonlinear Bose-Einstein condensate of ultracold atoms. For the first time, scientists demonstrated that it is possible to absorb the selected signal completely, even though the nonlinear system makes it difficult to predict the waves behaviour. The results can be used to manipulate superfluid flows, create atomic lasers, and also study nonlinear optical systems. The study was published in Science Advances.

Scientists create antilaser for ultracold atoms condensate

St. Petersburg, Russia | Posted on August 16th, 2018

Successful information transfer requires an ability to extinguish selected electromagnetic signal completely, without any reflection. This might happen only when the parameters of the electromagnetic waves and the system around them are coherent with each other. Devices that provide coherent perfect absorption of a wave with given parameters are called antilasers. They have been used for several years in optics, for example, to create high-precision filters or sensors. The work of standard antilasers is based on the destructive interference of waves incident on the absorber. If the parameters of the incident waves are matched in a certain way, then their interaction leads to the perfect absorption with zero reflection.

However, until now it was not clear whether such an absorption is possible in nonlinear systems, such as optical fiber transmitting high-intensity signal in strong external electromagnetic field. The problem is that it is much more difficult to describe the interaction of the incident waves propagating in the nonlinear medium. At the same time, nonlinear systems are interesting due to their capability of controlling wave frequency and shape without energy loss. This can be useful for signal distinction in optical computers. However, the problem is that nonlinear systems often turn out to be unstable and predicting their behavior can be difficult.

In studying this problem, scientists from Russia, Germany and Portugal became the first to construct an antilaser for waves propagating in a nonlinear medium. In their experiments, scientists used a Bose-Einstein condensate of ultracold atoms. Bose-Einstein condensate is a peculiar state of matter which can be observed when the atomic gas is cooled to extremely low temperatures close to the absolute zero. Under these conditions, a gas containing about 50,000 atoms condenses. This means that all atoms form a coherent cloud which supports propagation of matter waves. Strong repulsive interactions between the condensed atoms induce nonlinear properties in the system. For example, the interaction of waves ceases to obey the laws of linear interference.

To catch the condensate, scientists use a periodic optical trap formed by the intersection of two laser beams. A focused electron beam applied to the central cell of the lattice makes the atoms leak out from this cell. Atoms from neighboring cells go to the central cell, striving to make up for the leak. As a result, two superfluid matter flows directed toward the center are formed in the condensate. Once the flows meet in the central cell, they are absorbed perfectly, without reflection.

"The laws that describe the propagation of waves in various media are universal. Therefore, our idea can be adapted to implement an antilaser in other nonlinear systems. For example, in nonlinear optical waveguides or in condensates of quasiparticles, such as polaritons and excitons. This concept can also be used when working with nonlinear acoustic waves. For example, you can build a device that will absorb sounds of a certain frequency. Although such devices may not be made soon, we have shown that they are possible," notes researcher Dmitry Zezyulin, member of the International Laboratory of Photoprocesses in the Mesoscopic Systems at ITMO University.

Scientists currently plan to shift to nonlinear optical systems, where atoms will be replaced with photons. "Photons, unlike atoms, are difficult to keep in the system for long. However, in this project, my colleagues managed to make a nonlinear atomic system behave as if it consisted of photons. At the same time, they managed to implement an ideal absorption in such conditions. This means that these processes are also possible in nonlinear photonic systems," adds Ivan Iorsh, the head of the International Laboratory of Photoprocesses in the Mesoscopic Systems at ITMO University.

####

For more information, please click here

Contacts:
Dmitry Malkov

7-953-377-5508

Copyright © ITMO University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:

Related News Press

News and information

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Physics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Possible Futures

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Optical computing/Photonic computing

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

Photonics/Optics/Lasers

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project