Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields

Probability distributions (shown in red and blue for the two algorithms used in the work) narrow down in consecutive steps of the algorithms, leading to the precise identification of the magnetic-flux value. The green curve is the standard-quantum-limit distribution and the background is the interference pattern characteristic of the device.
CREDIT
Sergey Danilin and Sorin Paraoanu, Aalto University, with data from the paper doi: 10.1038/s41534-018-0078-y
Probability distributions (shown in red and blue for the two algorithms used in the work) narrow down in consecutive steps of the algorithms, leading to the precise identification of the magnetic-flux value. The green curve is the standard-quantum-limit distribution and the background is the interference pattern characteristic of the device. CREDIT Sergey Danilin and Sorin Paraoanu, Aalto University, with data from the paper doi: 10.1038/s41534-018-0078-y

Abstract:
The field of quantum science and technology experiences an ever-intensifying flurry of activity. The headlines are currently dominated by reports on progress towards building quantum computers that outperform their classical counterparts at specific computational tasks. A key challenge in that quest is to increase the quality and number of basic building blocks --- known as quantum bits, or qubits --- that can be connected to perform collectively quantum computations. The benchmark where a 'quantum advantage' is expected to emerge is at 50 or so qubits, and that goal is coming into sight. Pursuing a different route, a team including ETH physicists Andrey Lebedev and Gianni Blatter, together with colleagues in Finland and Russia, highlight another branch of technology where quantum devices promise unique benefits, and that with considerably more modest hardware resources. Writing in the journal npj Quantum Information, the team presents experiments in which they used a single qubit to measure magnetic fields with high sensitivity, employing 'quantum trickery' to push the limits.

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields

Zurich, Switzerland | Posted on July 2nd, 2018

In their work, the team used a qubit based on a superconducting circuit. The so-called transmon qubit is currently one of the leading candidates for a building block of large-scale quantum computers, not least as it offers numerous freedoms for engineering the circuits in ways that suit the problem at hand. Researchers at Aalto University (Finland) have now taken advantage of this flexibility and built a transmon qubit in a configuration that makes it particularly suitable for sensing magnetic fields. In essence, they constructed an artificial atom with an intrinsic magnetic moment that is around 100'000 times larger than that of natural atoms or ions. The coupling of that large moment to an external magnetic field then makes it possible to accurately measure the strength of the field.

In addition to providing a strong coupling to a magnetic field, the transmon qubit has a defining property of a quantum system on offer: coherent superpositions of quantum states. In a qubit-based magnetometer, the coherence between two states oscillates at a frequency proportional to the magnetic field penetrating the device. And the higher the accuracy with which the frequency --- or, the rate at which the phase of the wavefunction changes --- can be measured, the higher the sensitivity of the sensor.

To maximize the measurement accuracy, the team, guided by theoretical work performed by Lebedev and Blatter at ETH Zurich and co-workers at the Moscow Institute of Physics and Technology (MITP) and the Landau Institute for Theoretical Physics in Moscow, implemented two dedicated phase-estimation schemes that explicitly exploit the coherent nature of the qubit dynamics. Their strategy is to perform the measurements in an adaptive manner, changing the sampling parameters depending on the outcome of antecedent measurements. Such 'Bayesian inference' enabled the team to reach in their experiments a sensitivity that is some six times higher than what can be achieved with classical phase estimation. And whereas there is still plenty of room for refinement, that 'quantum boost' was already sufficient to beat the shot noise, which limits the precision of any standard, classical measurement.

The phase-estimation algorithms used in the transmon experiments are suitably adapted versions of schemes that have been developed for use in quantum computations. Similarly, the design of the hardware used in these experiments draws on experience in building qubits for quantum computers. This combination of harnessing quantum hardware and quantum algorithms in the context of quantum sensing provides an appealing route towards novel devices that, ultimately, promise to push the sensitivity of single- or few-qubit magnetometers towards and beyond the limits of current magnetic-field sensors.

####

For more information, please click here

Contacts:
Andreas Trabesinger

41-791-289-860

Copyright © ETH Zurich Department of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Magnetism

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Fighting cancer: Scientists developed a theory of 'collective behavior' of nanoparticles: Experiments with supercomputers are led by Russian and Scottish scientists February 1st, 2019

Physics

Sound and light trapped by disorder February 8th, 2019

Breaching the horizons: Universal spreading laws confirmed: A novel toolbox developed to implement ultrafast simulations of quantum transport allowed to achieve unprecedented limits in the understanding of wave spreading mechanisms February 4th, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

Quantum Physics

Breaching the horizons: Universal spreading laws confirmed: A novel toolbox developed to implement ultrafast simulations of quantum transport allowed to achieve unprecedented limits in the understanding of wave spreading mechanisms February 4th, 2019

Current generation via quantum proton transfer February 1st, 2019

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Possible Futures

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Chip Technology

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Quantum Computing

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Quantum chemistry on quantum computers: A quantum algorithm for tracking complex chemical reactions with neither performing demanding post-Hartree-Fock calculations nor exponential time explosion January 4th, 2019

Sensors

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Discoveries

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nominations invited for $250,000 Kabiller Prize — the world’s largest monetary award for achievement in nanomedicine: An additional $10,000 award will honor a young investigator in nanoscience, nanomedicine February 7th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Scientists program proteins to pair exactly: Technique paves the way for the creation of protein nanomachines and for the engineering of new cell functions December 21st, 2018

Strem Chemicals, Inc., Receives National Performance Improvement Honor: Company Recognized for Stakeholder Communications December 20th, 2018

Research partnerships

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

Fighting cancer: Scientists developed a theory of 'collective behavior' of nanoparticles: Experiments with supercomputers are led by Russian and Scottish scientists February 1st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project