Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields

Probability distributions (shown in red and blue for the two algorithms used in the work) narrow down in consecutive steps of the algorithms, leading to the precise identification of the magnetic-flux value. The green curve is the standard-quantum-limit distribution and the background is the interference pattern characteristic of the device.
CREDIT
Sergey Danilin and Sorin Paraoanu, Aalto University, with data from the paper doi: 10.1038/s41534-018-0078-y
Probability distributions (shown in red and blue for the two algorithms used in the work) narrow down in consecutive steps of the algorithms, leading to the precise identification of the magnetic-flux value. The green curve is the standard-quantum-limit distribution and the background is the interference pattern characteristic of the device. CREDIT Sergey Danilin and Sorin Paraoanu, Aalto University, with data from the paper doi: 10.1038/s41534-018-0078-y

Abstract:
The field of quantum science and technology experiences an ever-intensifying flurry of activity. The headlines are currently dominated by reports on progress towards building quantum computers that outperform their classical counterparts at specific computational tasks. A key challenge in that quest is to increase the quality and number of basic building blocks --- known as quantum bits, or qubits --- that can be connected to perform collectively quantum computations. The benchmark where a 'quantum advantage' is expected to emerge is at 50 or so qubits, and that goal is coming into sight. Pursuing a different route, a team including ETH physicists Andrey Lebedev and Gianni Blatter, together with colleagues in Finland and Russia, highlight another branch of technology where quantum devices promise unique benefits, and that with considerably more modest hardware resources. Writing in the journal npj Quantum Information, the team presents experiments in which they used a single qubit to measure magnetic fields with high sensitivity, employing 'quantum trickery' to push the limits.

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields

Zurich, Switzerland | Posted on July 2nd, 2018

In their work, the team used a qubit based on a superconducting circuit. The so-called transmon qubit is currently one of the leading candidates for a building block of large-scale quantum computers, not least as it offers numerous freedoms for engineering the circuits in ways that suit the problem at hand. Researchers at Aalto University (Finland) have now taken advantage of this flexibility and built a transmon qubit in a configuration that makes it particularly suitable for sensing magnetic fields. In essence, they constructed an artificial atom with an intrinsic magnetic moment that is around 100'000 times larger than that of natural atoms or ions. The coupling of that large moment to an external magnetic field then makes it possible to accurately measure the strength of the field.

In addition to providing a strong coupling to a magnetic field, the transmon qubit has a defining property of a quantum system on offer: coherent superpositions of quantum states. In a qubit-based magnetometer, the coherence between two states oscillates at a frequency proportional to the magnetic field penetrating the device. And the higher the accuracy with which the frequency --- or, the rate at which the phase of the wavefunction changes --- can be measured, the higher the sensitivity of the sensor.

To maximize the measurement accuracy, the team, guided by theoretical work performed by Lebedev and Blatter at ETH Zurich and co-workers at the Moscow Institute of Physics and Technology (MITP) and the Landau Institute for Theoretical Physics in Moscow, implemented two dedicated phase-estimation schemes that explicitly exploit the coherent nature of the qubit dynamics. Their strategy is to perform the measurements in an adaptive manner, changing the sampling parameters depending on the outcome of antecedent measurements. Such 'Bayesian inference' enabled the team to reach in their experiments a sensitivity that is some six times higher than what can be achieved with classical phase estimation. And whereas there is still plenty of room for refinement, that 'quantum boost' was already sufficient to beat the shot noise, which limits the precision of any standard, classical measurement.

The phase-estimation algorithms used in the transmon experiments are suitably adapted versions of schemes that have been developed for use in quantum computations. Similarly, the design of the hardware used in these experiments draws on experience in building qubits for quantum computers. This combination of harnessing quantum hardware and quantum algorithms in the context of quantum sensing provides an appealing route towards novel devices that, ultimately, promise to push the sensitivity of single- or few-qubit magnetometers towards and beyond the limits of current magnetic-field sensors.

####

For more information, please click here

Contacts:
Andreas Trabesinger

41-791-289-860

Copyright © ETH Zurich Department of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Quantum Physics

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Physics

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Magnetism

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

The nanoscience of ferroelectric and ferromagnetic domains converges on Barcelona September 27th, 2018

Govt.-Legislation/Regulation/Funding/Policy

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Possible Futures

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Arrowhead Pharmaceuticals Presents Late-Breaking Preliminary Clinical Data on ARO-HBV at Liver Meeting® 2018 November 9th, 2018

Chip Technology

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Quantum Computing

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Sensors

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Nanotech Artisans Sculpt with DNA November 5th, 2018

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

Discoveries

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Announcements

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Research partnerships

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Tiny light detectors work like gecko ears October 30th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project