Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > BNAs improve performance of Li-ion batteries

Fig. (a) are the galvanostatic charge-discharge curves of BNAs integrated electrode at a current density of 25 μA cm-2 . The 1st, 2nd discharge capacities of BNAs integrated electrode are 2471.5, 2311.7 μAh·cm-2 (1861.8, 1741.4 mAh g-1). Fig. (b) reveals the rate capability of BNAs integrated electrode at current densities of 250, 500, 1000, 2000, 5000 μAh·cm-2 respectively. The discharge capacities are 1219, 1128, 972, 678, 430 μAh·cm-2 (918.2, 849.7, 732.2, 510.7, 323.9 mAh g-1), respectively. Fig. (c) shows the cycling stability of BNAs integrated electrodes. Reversible capacity of BNAs integrated electrodes can maintain a capacity of 410 μAh·cm-2 (308.8 mAh g-1, at a current density of 320 μAh·cm-2) after 600 cycles. When the current density was 75 μAh·cm-2, the electrode exhibits a high capacity of 600 μAh·cm-2 (451.9 mAh g-1) after 500 cycles. The above results show that the integration of active material and current collector can greatly improve the capacity, rate ability and cyclical stability of the battery.
CREDIT
Shuang Yuan, Associate Prof. Department of New Energy Science & Engineering, School of Metallurgy Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education) Northeastern University, China Tel: +86-24-8368 1171 E-mail: yuanshuang@ciac.ac.cn Add: Box314, Northeastern University, Shenyang, 110819, China
Fig. (a) are the galvanostatic charge-discharge curves of BNAs integrated electrode at a current density of 25 μA cm-2 . The 1st, 2nd discharge capacities of BNAs integrated electrode are 2471.5, 2311.7 μAh·cm-2 (1861.8, 1741.4 mAh g-1). Fig. (b) reveals the rate capability of BNAs integrated electrode at current densities of 250, 500, 1000, 2000, 5000 μAh·cm-2 respectively. The discharge capacities are 1219, 1128, 972, 678, 430 μAh·cm-2 (918.2, 849.7, 732.2, 510.7, 323.9 mAh g-1), respectively. Fig. (c) shows the cycling stability of BNAs integrated electrodes. Reversible capacity of BNAs integrated electrodes can maintain a capacity of 410 μAh·cm-2 (308.8 mAh g-1, at a current density of 320 μAh·cm-2) after 600 cycles. When the current density was 75 μAh·cm-2, the electrode exhibits a high capacity of 600 μAh·cm-2 (451.9 mAh g-1) after 500 cycles. The above results show that the integration of active material and current collector can greatly improve the capacity, rate ability and cyclical stability of the battery. CREDIT Shuang Yuan, Associate Prof. Department of New Energy Science & Engineering, School of Metallurgy Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education) Northeastern University, China Tel: +86-24-8368 1171 E-mail: yuanshuang@ciac.ac.cn Add: Box314, Northeastern University, Shenyang, 110819, China

Abstract:
Recent research published in a paper in NANO by a group of researchers from Northeastern University investigate the effect of hierarchical Bi2MoO6 nanosheet arrays growing on three-dimensional Ni foam synthesized by one-step template-free route. The obtained BNAs used directly as binder-free integrated electrode for Li-ion batteries (LIBs) exhibits a super high reversible discharge capacity of 2311.7 μAh/cm2, and an excellent cycle stability.

BNAs improve performance of Li-ion batteries

Singapore | Posted on June 27th, 2018

With the rapid development of modern technology, a variety of portable electronic products have become the requirement of time. Li-ion batteries (LIBs) are the optimum selection by virtue of long cycle-life and high energy density properties. Meanwhile, LIBs are viewed as one of the most promising technology in various fields including the defense industry, space technology, electric vehicles and other fields. Nowadays, commercial LIBs mainly use graphite as the anode material. However, graphite can hardly provide the high capacity and high energy density necessary to satisfy the demand required for high power application of the next-generation LIBs due to its low theoretical specific capacity.

Thus, development of high-performance anode materials with high capacity as well as low insertion voltage is urgently needed. In terms of their high capacity, lots of metal oxides have attracted great interest in recent years. However, most metal oxides have low conductivity, high desertion voltage and structural instability, which result in poor rate capability, low power density and poor cycling stability. These shortcomings limit the application of metal oxides as anode materials for LIBs.

Among the numerous metal oxides, Bi2MoO6 with high theoretical capacity (791 mAh/g) and low desertion voltage (<1.0 V) has been widely studied for its excellent photoelectric properties, but, there are few reports on the nanostructure Bi2MoO6 as anode material for LIBs, not to mention the Bi2MoO6 integrated electrode.

Thereafter, developing an effective strategy to prepare the Bi2MoO6 integrated electrode and then exploring their electrochemical performance toward lithium is of great importance. To tackle the issue of low intrinsic conductivity, inferior cycling stability for Bi2MoO6 as anode material, the researchers proclaim an effective strategy to the synthesis of hierarchical Bi2MoO6 nanosheet arrays (BNAs) on the three-dimensional (3D) Ni foam by one-step template-free hydrothermal method. Remarkably, BNAs-integrated electrodes exhibit excellent electrochemical properties (a super high reversible discharge capacity of 2311.7 μAh/cm2, more than 500 times of cyclic stability), when used as the anode electrode for LIBs.

Undoubtedly, this work disclosed a new comprehension for improving the performance of LIBs with metal oxides as the anode material. It can improve the cycle stability and capacity of lithium-ion battery and is expected to be used in portable electronic devices in the future.

###

This work was financially supported by the National College Students Innovation Experiment Program (Grant No. 201710145000284), National Natural Science Foundation of China (Grant Nos. 51425401, 51690161 and 21701022), Fundamental Research Funds for the Central Universities (Grant No. N160903001), and the Project Funded by China Postdoctoral Science Foundation (Grant No. 2017T100181) and the Postdoctoral Science Foundation of Northeastern University (China, Grant No. 20170304).

The co-authors of this paper are Wei-Bin Chen, Li-Na Zhang, Zhi-Jing Ji, Ya-Dan Zheng, Shuang Yuan and Qiang Wang, all from Northeastern University.

####

For more information, please click here

Contacts:
Tay Yu Shan

65-646-65775

Corresponding author is
Shuang Yuan

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more insight into the research described, readers are invited to access the paper in NANO:

Related News Press

News and information

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Possible Futures

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Helping smartphones hold their charge longer February 6th, 2019

Current generation via quantum proton transfer February 1st, 2019

Static electricity could charge our electronics: While common in everyday life, the science behind this phenomenon is not well understood January 25th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nominations invited for $250,000 Kabiller Prize — the world’s largest monetary award for achievement in nanomedicine: An additional $10,000 award will honor a young investigator in nanoscience, nanomedicine February 7th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Scientists program proteins to pair exactly: Technique paves the way for the creation of protein nanomachines and for the engineering of new cell functions December 21st, 2018

Strem Chemicals, Inc., Receives National Performance Improvement Honor: Company Recognized for Stakeholder Communications December 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project