Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life

Simulated wetlands at the Center for the Environmental Implications of Nanotechnology.
CREDIT
Photo by Steven Anderson, Duke University.
Simulated wetlands at the Center for the Environmental Implications of Nanotechnology. CREDIT Photo by Steven Anderson, Duke University.

Abstract:
The last 10 years have seen a surge in the use of tiny substances called nanomaterials in agrochemicals like pesticides and fungicides. The idea is to provide more disease protection and better yields for crops, while decreasing the amount of toxins sprayed on agricultural fields.

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life

Durham, NC | Posted on June 26th, 2018

But when combined with nutrient runoff from fertilized cropland and manure-filled pastures, these "nanopesticides" could also mean more toxic algae outbreaks for nearby streams, lakes and wetlands, a new study finds.

The results appear June 25 in the journal Ecological Applications.

Too small to see with all but the most powerful microscopes, engineered nanomaterials are substances manufactured to be less than 100 nanometers in diameter, many times smaller than a hair's breadth.

Their nano-scale gives them different chemical and physical properties from their bulk counterparts, including more surface area for reactions and interactions.

Those interactions could intensify harmful algal blooms in wetlands, according to experiments led by Marie Simonin, a postdoctoral associate with biology professor Emily Bernhardt at Duke University.

Carbon nanotubes and teeny tiny particles of silver, titanium dioxide and other metals are already added to hundreds of commercial products to make everything from faster, lighter electronics, self-cleaning fabrics, and smarter food packaging that can monitor food for spoilage. They are also used on farms for slow- or controlled-release plant fertilizers and pesticides and more targeted delivery, and because they are effective at lower doses than conventional products.

These and other applications have generated tremendous interest and investment in nanomaterials. However the potential risks to human health or the environment aren't fully understood, Simonin said.

Most of the 260,000 to 309,000 metric tons of nanomaterials produced worldwide each year are eventually disposed in landfills, according to a previous study. But of the remainder, up to 80,400 metric tons per year are released into soils, and up to 29,200 metric tons end up in natural bodies of water.

"And these emerging contaminants don't end up in water bodies alone," Simonin said. "They probably co-occur with nutrient runoff. There are likely multiple stressors interacting."

Algae outbreaks already plague polluted waters worldwide, said Steven Anderson, a research analyst in the Bernhardt Lab at Duke and one of the authors of the research.

Nitrogen and phosphorous pollution makes its way into wetlands and waterways in the form of agricultural runoff and untreated wastewater. The excessive nutrients cause algae to grow out of control, creating a thick mat of green scum or slime on the surface of the water that blocks sunlight from reaching other plants.

These nutrient-fueled "blooms" eventually reduce oxygen levels to the point where fish and other organisms can't survive, creating dead zones in the water. Some algal blooms also release toxins that can make pets and people who swallow them sick.

To find out how the combined effects of nutrient runoff and nanoparticle contamination would affect this process, called eutrophication, the researchers set up 18 separate 250-liter tanks with sandy sloped bottoms to mimic small wetlands.

Each open-air tank was filled with water, soil and a variety of wetland plants and animals such as waterweed and mosquitofish.

Over the course of the nine-month experiment, some tanks got a weekly dose of algae-promoting nitrates and phosphates like those found in fertilizers, some tanks got nanoparticles -- either copper or gold -- and some tanks got both.

Along the way the researchers monitored water chemistry, plant and algae growth and metabolism, and nanoparticle accumulation in plant tissues.

"The results were surprising," Simonin said. The nanoparticles had tiny effects individually, but when added together with nutrients, even low concentrations of gold and copper nanoparticles used in fungicides and other products turned the once-clear water a murky pea soup color, its surface covered with bright green smelly mats of floating algae.

Over the course of the experiment, big algal blooms were more than three times more frequent and more persistent in tanks where nanoparticles and nutrients were added together than where nutrients were added alone. The algae overgrowths also reduced dissolved oxygen in the water.

It's not clear yet how nanoparticle exposure shifts the delicate balance between plants and algae as they compete for nutrients and other resources. But the results suggest that nanoparticles and other "metal-based synthetic chemicals may be playing an under-appreciated role in the global trends of increasing eutrophication," the researchers said.

###

Other study authors include Benjamin Colman of the University of Montana; Matthew Ruis, Christina Bergemann, Emily Bernhardt, Nicholas Geitner, Mengchi Ho, Belen de la Barrera, Curtis Richardson and Mark Wiesner of Duke; Ryan King and Brittany Perrotta of Baylor University; Astrid Avellan and Gregory Lowry of Carnegie Mellon University and Jason Unrine of the University of Kentucky.

This research was conducted through the collaborative multi-institutional Center for the Environmental Implications of Nanotechnology supported by the U.S. National Science Foundation and the Environmental Protection Agency under NSF Cooperative Agreement EF-0830093 and DBI-1266252, and by grants from National Institute of Environmental Health Sciences (T32-ES021432) and the Duke Wetland Center Endowment.

####

For more information, please click here

Contacts:
Robin Ann Smith

919-681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: "Engineered Nanoparticles Interact With Nutrients to Intensify Eutrophication in a Wetland Ecosystem Experiment," Marie Simonin, Benjamin Colman, Steven Anderson et al. Ecological Applications, June 25, 2018:

Related News Press

News and information

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Display technology/LEDs/SS Lighting/OLEDs

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-APOC3 June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

Possible Futures

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Announcements

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

Food/Agriculture/Supplements

How slippery surfaces allow sticky pastes and gels to slide: Engineered surface treatment developed at MIT can reduce waste and improve efficiency in many processes April 23rd, 2019

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

A Deep tech startup is disrupting dairy industry in Chennai Demo Day at IIT-Madras Research Park February 20th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Environment

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Transforming waste heat into clean energy: Researchers use supercomputers to explore new materials for thermoelectric generation May 2nd, 2019

Safety-Nanoparticles/Risk management

Plastic waste disintegrates into nanoparticles, study finds December 28th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

Research partnerships

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project