Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light

"Our finding may pave the way for improvements in devices such as optical sensors and photovoltaic cells," says Emory physicist Hayk Harutyunyan. (Stock photo)
"Our finding may pave the way for improvements in devices such as optical sensors and photovoltaic cells," says Emory physicist Hayk Harutyunyan. (Stock photo)

Abstract:
Physicists developed a way to determine the electronic properties of thin gold films after they interact with light. Nature Communications published the new method, which adds to the understanding of the fundamental laws that govern the interaction of electrons and light.

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light

Atlanta, GA | Posted on June 15th, 2018

"Surprisingly, up to now there have been very limited ways of determining what exactly happens with materials after we shine light on them," says Hayk Harutyunyan, an assistant professor of physics at Emory University and lead author of the research. "Our finding may pave the way for improvements in devices such as optical sensors and photovoltaic cells."

From solar panels to cameras and cell phones -- to seeing with our eyes -- the interaction of photons of light with atoms and electrons is ubiquitous. "Optical phenomenon is such a fundamental process that we take it for granted, and yet it's not fully understood how light interacts with materials," Harutyunyan says.

One obstacle to understanding the details of these interactions is their complexity. When the energy of a light photon is transferred to an electron in a light-absorbing material, the photon is destroyed and the electron is excited from one level to another. But so many photons, atoms and electrons are involved -- and the process happens so quickly -- that laboratory modeling of the process is computationally challenging.

For the Nature Communications paper, the physicists started with a relatively simple material system -- ultra-thin gold layers -- and conducted experiments on it.

"We did not use brute computational power," Harutyunyan says. "We started with experimental data and developed an analytical and theoretical model that allowed us to use pen and paper to decode the data."

Harutyunyan and Manoj Manjare, a post-doctoral fellow in his lab, designed and conducted the experiments. Stephen Gray, Gary Wiederrecht and Tal Heipern -- from the Argonne National Laboratory -- came up with the mathematical tools needed. The Argonne physicists also worked on the theoretical model, along with Alexander Govorov from Ohio University.

For the experiments, the nanolayers of gold were positioned at particular angles. Light was then shined on the gold in two, sequential pulses. "These laser light pulses were very short in time -- thousands of billions of times shorter than a second," Harutyunyan says. "The first pulse was absorbed by the gold. The second pulse of light measured the results of that absorption, showing how the electrons changed from a ground to excited state."

Typically, gold absorbs light at green frequencies, reflecting all the other colors of the spectrum, which makes the metal appear yellow. In the form of nanolayers, however, gold can absorb light at longer wave lengths, in the infrared part of the spectrum.

"At a certain excitation angle, we were able to induce electronic transitions that were not just a different frequency but a different physical process," Harutyunyan says. "We were able to track the evolution of that process over time and demonstrate why and how those transitions happen."

Using the method to better understand the interactions underlying light absorption by a material may lead to ways to tune and manage these interactions.

Photovoltaic solar energy cells, for instance, are currently only capable of absorbing a small percentage of the light that hits them. Optical sensors used in biomedicine and photo catalysts used in chemistry are other examples of devices that could potentially be improved by the new method.

While the Nature Communications paper offers proof of concept, the researchers plan to continue to refine the method's use with gold while also experimenting with a range of other materials.

"Ultimately, we want to demonstrate that this is a broad method that could be applied to many useful materials," Harutyunyan says.

####

For more information, please click here

Contacts:
Carol Clark

404-727-0501

Copyright © Emory Health Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Possible Futures

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Optical computing/Photonic computing

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sound and light trapped by disorder February 8th, 2019

CEA-Leti to Present 21 Papers at Photonics West & Unveil its Latest Research on Greater Photonics-Electronics and Software Convergence: Optics and Si-Photonics Teams Will Explain Transfer-Ready Solutions For Wavelength Imaging and Other Applications at Leti Booth, Feb. 5-7 February 1st, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

Sensors

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Discoveries

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Energy

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Helping smartphones hold their charge longer February 6th, 2019

Current generation via quantum proton transfer February 1st, 2019

A powerful catalyst for electrolysis of water that could help harness renewable energy January 25th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project