Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A nanotech sensor that turns molecular fingerprints into bar codes

The authors show a pixelated sensor metasurface for molecular spectroscopy. It consists of metapixels designed to concentrate light into nanometer-sized volumes in order to amplify and detect the absorption fingerprint of analyte molecules at specific resonance wavelengths. Simultaneous imaging-based read-out of all metapixels provides a spatial map of the molecular absorption fingerprint sampled at the individual resonance wavelengths. This pixelated absorption map can be seen as a two-dimensional barcode of the molecular fingerprint, which encodes the characteristic absorption bands as distinct features of the resulting image.
CREDIT
EPFL
The authors show a pixelated sensor metasurface for molecular spectroscopy. It consists of metapixels designed to concentrate light into nanometer-sized volumes in order to amplify and detect the absorption fingerprint of analyte molecules at specific resonance wavelengths. Simultaneous imaging-based read-out of all metapixels provides a spatial map of the molecular absorption fingerprint sampled at the individual resonance wavelengths. This pixelated absorption map can be seen as a two-dimensional barcode of the molecular fingerprint, which encodes the characteristic absorption bands as distinct features of the resulting image. CREDIT EPFL

Abstract:
Infrared spectroscopy is the benchmark method for detecting and analyzing organic compounds. But it requires complicated procedures and large, expensive instruments, making device miniaturization challenging and hindering its use for some industrial and medical applications and for data collection out in the field, such as for measuring pollutant concentrations. Furthermore, it is fundamentally limited by low sensitivities and therefore requires large sample amounts.

A nanotech sensor that turns molecular fingerprints into bar codes

Lausanne, Switzerland | Posted on June 7th, 2018

However, scientists at EPFL's School of Engineering and at Australian National University (ANU) have developed a compact and sensitive nanophotonic system that can identify a molecule's absorption characteristics without using conventional spectrometry.

Their system consists of an engineered surface covered with hundreds of tiny sensors called metapixels, which can generate a distinct bar code for every molecule that the surface comes into contact with. These bar codes can be massively analyzed and classified using advanced pattern recognition and sorting technology such as artificial neural networks. This research - which sits at the crossroads of physics, nanotechnology and big data - has been published in Science.

Translating molecules into bar codes

The chemical bonds in organic molecules each have a specific orientation and vibrational mode. That means every molecule has a set of characteristic energy levels, which are commonly located in the mid-infrared range - corresponding to wavelengths of around 4 to 10 microns. Therefore, each type of molecule absorbs light at different frequencies, giving each one a unique "signature." Infrared spectroscopy detects whether a given molecule is present in a sample by seeing if the sample absorbs light rays at the molecule's signature frequencies. However, such analyses require lab instruments with a hefty size and price tag.

The pioneering system developed by the EPFL scientists is both highly sensitive and capable of being miniaturized; it uses nanostructures that can trap light on the nanoscale and thereby provide very high detection levels for samples on the surface. "The molecules we want to detect are nanometric in scale, so bridging this size gap is an essential step," says Hatice Altug, head of EPFL's BioNanoPhotonic Systems Laboratory and a coauthor of the study.

The system's nanostructures are grouped into what are called metapixels so that each one resonates at a different frequency. When a molecule comes into contact with the surface, the way the molecule absorbs light changes the behavior of all the metapixels it touches.

"Importantly, the metapixels are arranged in such a way that different vibrational frequencies are mapped to different areas on the surface," says Andreas Tittl, lead author of the study.

This creates a pixelated map of light absorption that can be translated into a molecular bar code - all without using a spectrometer.

The scientists have already used their system to detect polymers, pesticides and organic compounds. What's more, their system is compatible with CMOS technology.

"Thanks to our sensors' unique optical properties, we can generate bar codes even with broadband light sources and detectors," says Aleksandrs Leitis, a coauthor of the study.

There are a number of potential applications for this new system. "For instance, it could be used to make portable medical testing devices that generate bar codes for each of the biomarkers found in a blood sample," says Dragomir Neshev, another coauthor of the study.

Artificial intelligence could be used in conjunction with this new technology to create and process a whole library of molecular bar codes for compounds ranging from protein and DNA to pesticides and polymers. That would give researchers a new tool for quickly and accurately spotting miniscule amounts of compounds present in complex samples.

###

Source:

Andreas Tittl, Aleksandrs Leitis, Mingkai Liu, Filiz Yesilkoy, Duk-Yong Choi, Dragomir N. Neshev, Yuri S. Kivshar, and Hatice Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science

BioNanoPhotonic Systems Laboratory (BIOS) / Interfaculty Institute of Bioengineering IBI / School of Engineering - School of Life Sciences / EPFL Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra

####

For more information, please click here

Contacts:
Hatice Altug

41-216-931-170

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Possible Futures

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Nanomedicine

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Nominations invited for $250,000 Kabiller Prize — the world’s largest monetary award for achievement in nanomedicine: An additional $10,000 award will honor a young investigator in nanoscience, nanomedicine February 7th, 2019

Kanazawa University research: Chirality inversion in a helical molecule at controlled speeds February 6th, 2019

Sensors

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Discoveries

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Announcements

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Food/Agriculture/Supplements

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Disruptive by Design: Nano Now February 1st, 2019

A Nanobiotechnology Startup from a small town in India attracts the Global Investors January 27th, 2019

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Environment

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Plastic waste disintegrates into nanoparticles, study finds December 28th, 2018

Photonics/Optics/Lasers

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Sound and light trapped by disorder February 8th, 2019

CEA-Leti to Present 21 Papers at Photonics West & Unveil its Latest Research on Greater Photonics-Electronics and Software Convergence: Optics and Si-Photonics Teams Will Explain Transfer-Ready Solutions For Wavelength Imaging and Other Applications at Leti Booth, Feb. 5-7 February 1st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project