Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A nanotech sensor that turns molecular fingerprints into bar codes

The authors show a pixelated sensor metasurface for molecular spectroscopy. It consists of metapixels designed to concentrate light into nanometer-sized volumes in order to amplify and detect the absorption fingerprint of analyte molecules at specific resonance wavelengths. Simultaneous imaging-based read-out of all metapixels provides a spatial map of the molecular absorption fingerprint sampled at the individual resonance wavelengths. This pixelated absorption map can be seen as a two-dimensional barcode of the molecular fingerprint, which encodes the characteristic absorption bands as distinct features of the resulting image.
CREDIT
EPFL
The authors show a pixelated sensor metasurface for molecular spectroscopy. It consists of metapixels designed to concentrate light into nanometer-sized volumes in order to amplify and detect the absorption fingerprint of analyte molecules at specific resonance wavelengths. Simultaneous imaging-based read-out of all metapixels provides a spatial map of the molecular absorption fingerprint sampled at the individual resonance wavelengths. This pixelated absorption map can be seen as a two-dimensional barcode of the molecular fingerprint, which encodes the characteristic absorption bands as distinct features of the resulting image. CREDIT EPFL

Abstract:
Infrared spectroscopy is the benchmark method for detecting and analyzing organic compounds. But it requires complicated procedures and large, expensive instruments, making device miniaturization challenging and hindering its use for some industrial and medical applications and for data collection out in the field, such as for measuring pollutant concentrations. Furthermore, it is fundamentally limited by low sensitivities and therefore requires large sample amounts.

A nanotech sensor that turns molecular fingerprints into bar codes

Lausanne, Switzerland | Posted on June 7th, 2018

However, scientists at EPFL's School of Engineering and at Australian National University (ANU) have developed a compact and sensitive nanophotonic system that can identify a molecule's absorption characteristics without using conventional spectrometry.

Their system consists of an engineered surface covered with hundreds of tiny sensors called metapixels, which can generate a distinct bar code for every molecule that the surface comes into contact with. These bar codes can be massively analyzed and classified using advanced pattern recognition and sorting technology such as artificial neural networks. This research - which sits at the crossroads of physics, nanotechnology and big data - has been published in Science.

Translating molecules into bar codes

The chemical bonds in organic molecules each have a specific orientation and vibrational mode. That means every molecule has a set of characteristic energy levels, which are commonly located in the mid-infrared range - corresponding to wavelengths of around 4 to 10 microns. Therefore, each type of molecule absorbs light at different frequencies, giving each one a unique "signature." Infrared spectroscopy detects whether a given molecule is present in a sample by seeing if the sample absorbs light rays at the molecule's signature frequencies. However, such analyses require lab instruments with a hefty size and price tag.

The pioneering system developed by the EPFL scientists is both highly sensitive and capable of being miniaturized; it uses nanostructures that can trap light on the nanoscale and thereby provide very high detection levels for samples on the surface. "The molecules we want to detect are nanometric in scale, so bridging this size gap is an essential step," says Hatice Altug, head of EPFL's BioNanoPhotonic Systems Laboratory and a coauthor of the study.

The system's nanostructures are grouped into what are called metapixels so that each one resonates at a different frequency. When a molecule comes into contact with the surface, the way the molecule absorbs light changes the behavior of all the metapixels it touches.

"Importantly, the metapixels are arranged in such a way that different vibrational frequencies are mapped to different areas on the surface," says Andreas Tittl, lead author of the study.

This creates a pixelated map of light absorption that can be translated into a molecular bar code - all without using a spectrometer.

The scientists have already used their system to detect polymers, pesticides and organic compounds. What's more, their system is compatible with CMOS technology.

"Thanks to our sensors' unique optical properties, we can generate bar codes even with broadband light sources and detectors," says Aleksandrs Leitis, a coauthor of the study.

There are a number of potential applications for this new system. "For instance, it could be used to make portable medical testing devices that generate bar codes for each of the biomarkers found in a blood sample," says Dragomir Neshev, another coauthor of the study.

Artificial intelligence could be used in conjunction with this new technology to create and process a whole library of molecular bar codes for compounds ranging from protein and DNA to pesticides and polymers. That would give researchers a new tool for quickly and accurately spotting miniscule amounts of compounds present in complex samples.

###

Source:

Andreas Tittl, Aleksandrs Leitis, Mingkai Liu, Filiz Yesilkoy, Duk-Yong Choi, Dragomir N. Neshev, Yuri S. Kivshar, and Hatice Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science

BioNanoPhotonic Systems Laboratory (BIOS) / Interfaculty Institute of Bioengineering IBI / School of Engineering - School of Life Sciences / EPFL Nonlinear Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra

####

For more information, please click here

Contacts:
Hatice Altug

41-216-931-170

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Possible Futures

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Nanomedicine

A*STAR, One BioMed launch S$9m joint lab to make diagnostic kit for infectious diseases December 3rd, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

Arrowhead Pharmaceuticals to Webcast 2018 Fiscal Year End Results November 27th, 2018

Sensors

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Discoveries

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Iran Develops Water-Repellent Nano-Paint December 5th, 2018

Announcements

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Food/Agriculture/Supplements

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Environment

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

Ultrasensitive toxic gas detector October 31st, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Photonics/Optics/Lasers

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project