Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory

Electrodes stretch diamond strings to increase the frequency of atomic vibrations to which an electron is sensitive, just like tightening a guitar string increases the frequency or pitch of the string. The tension quiets a qubit's environment and improves memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip.
CREDIT
Second Bay Studios/Harvard SEAS
Electrodes stretch diamond strings to increase the frequency of atomic vibrations to which an electron is sensitive, just like tightening a guitar string increases the frequency or pitch of the string. The tension quiets a qubit's environment and improves memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip. CREDIT Second Bay Studios/Harvard SEAS

Abstract:
A quantum internet promises completely secure communication. But using quantum bits or qubits to carry information requires a radically new piece of hardware - a quantum memory. This atomic-scale device needs to store quantum information and convert it into light to transmit across the network.

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory

Cambridge, MA | Posted on May 24th, 2018

A major challenge to this vision is that qubits are extremely sensitive to their environment, even the vibrations of nearby atoms can disrupt their ability to remember information. So far, researchers have relied on extremely low temperatures to quiet vibrations but, achieving those temperatures for large-scale quantum networks is prohibitively expensive.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the University of Cambridge have developed a quantum memory solution that is as simple as tuning a guitar.

The researchers engineered diamond strings that can be tuned to quiet a qubit's environment and improve memory from tens to several hundred nanoseconds, enough time to do many operations on a quantum chip.

"Impurities in diamond have emerged as promising nodes for quantum networks," said Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering at SEAS and senior author of the research. "However, they are not perfect. Some kinds of impurities are really good at retaining information but have a hard time communicating, while others are really good communicators but suffer from memory loss. In this work, we took the latter kind and improved the memory by ten times."

The research is published in Nature Communications.

Impurities in diamond, known as silicon-vacancy color centers, are powerful qubits. An electron trapped in the center acts as a memory bit and can emit single photons of red light, which would in turn act as long-distance information carriers of a quantum internet. But with the nearby atoms in the diamond crystal vibrating randomly, the electron in the center quickly forgets any quantum information it is asked to remember.

"Being an electron in a color center is like trying to study at a loud marketplace," said Srujan Meesala, a graduate student at SEAS and co-first author of the paper. "There is all this noise around you. If you want to remember anything, you need to either ask the crowds to stay quiet or find a way to focus over the noise. We did the latter."

To improve memory in a noisy environment, the researchers carved the diamond crystal housing the color center into a thin string, about one micron wide -- a hundred times thinner than a strand of hair -- and attached electrodes to either side. By applying a voltage, the diamond string stretches and increases the frequency of vibrations the electron is sensitive to, just like tightening a guitar string increases the frequency or pitch of the string.

"By creating tension in the string, we increase the energy scale of vibrations that the electron is sensitive to, meaning it can now only feel very high energy vibrations," said Meesala. "This process effectively turns the surrounding vibrations in the crystal to an irrelevant background hum, allowing the electron inside the vacancy to comfortably hold information for hundreds of nanoseconds, which can be a really long time on the quantum scale. A symphony of these tunable diamond strings could serve as the backbone of a future quantum internet."

Next, the researchers hope to extend the memory of the qubits to the millisecond, which would enable hundreds of thousands of operations and long-distance quantum communication.

The Harvard Office of Technology Development has protected the intellectual property relating to this project and is exploring commercialization opportunities.

###

The research was co-first authored by Young-Ik Sohn and Srujan Meesala from Marko Loncar's group at Harvard, and Benjamin Pingault from Mete Atature's group at the University of Cambridge. Researchers from Harvard SEAS, Harvard Physics, Sandia National Laboratories also contributed to the manuscript.

The research was supported by the National Science Foundation-sponsored Center for Integrated Quantum Materials, Office of Naval Research Multidisciplinary University Research Initiative on Quantum Optomechanics, NSF Emerging Frontiers in Research and Innovation ACQUIRE, the University of Cambridge, the ERC Consolidator Grant PHOENICS, and the EPSRC Quantum Technology Hub NQIT.

####

For more information, please click here

Contacts:
Leah Burrows

617-496-1351

Copyright © Harvard John A. Paulson School of Engineering and Applied Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum communication

Exchanging information securely using quantum communication in future fiber-optic networks: New research demonstrates potential solutions as transmission networks evolve to use multicore fiber March 6th, 2019

TOCHA will take a topological approach to the next generation of electronic, photonic and phononic devices January 31st, 2019

Satellite study proves global quantum communication will be possible December 28th, 2018

National Quantum Initiative Act Passes Congress December 24th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

Possible Futures

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Memory Technology

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Quantum Computing

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Optical computing/Photonic computing

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid February 28th, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

Discoveries

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Announcements

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Patents/IP/Tech Transfer/Licensing

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Flipping the view: New microscope offers options for drug discovery, safety and effectiveness February 28th, 2019

Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter) January 24th, 2019

New composite advances lignin as a renewable 3D printing material December 28th, 2018

Military

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Research partnerships

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

CEA-Leti Breakthrough Opens Path to New Vaccine for HIV: Lipidots Platform Strengthens Immune Response to Protein That Is Key to HIV Vaccine; Results Presented in Nature Publishing Group’s npj Vaccines February 27th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project