Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Self-assembling 3D battery would charge in seconds

Wiesner Group/Provided
A rendering of the 3D battery architecture (top; not to scale) with interpenetrating anode (grey, with minus sign), separator (green), and cathode (blue, plus sign), each about 20 nanometers in size. Below are their respective molecular structures.
Wiesner Group/Provided A rendering of the 3D battery architecture (top; not to scale) with interpenetrating anode (grey, with minus sign), separator (green), and cathode (blue, plus sign), each about 20 nanometers in size. Below are their respective molecular structures.

Abstract:
The world is a big place, but it's gotten smaller with the advent of technologies that put people from across the globe in the palm of one's hand. And as the world has shrunk, it has also demanded that things happen ever faster - including the time it takes to charge an electronic device.

Self-assembling 3D battery would charge in seconds

Ithaca, NY | Posted on May 22nd, 2018

A cross-campus collaboration led by Ulrich Wiesner, professor of engineering in the at Cornell University, addresses this demand with a novel energy storage device architecture that has the potential for lightning-quick charges.

The group's idea: Instead of having the batteries' anode and cathode on either side of a nonconducting separator, intertwine the components in a self-assembling, 3D gyroidal structure, with thousands of nanoscale pores filled with the elements necessary for energy storage and delivery.

"This is truly a revolutionary battery architecture," said Wiesner, whose group's paper, "Block Copolymer Derived 3-D Interpenetrating Multifunctional Gyroidal Nanohybrid for Electrical Energy Storage," was published May 16 in Energy and Environmental Science, a publication of the Royal Society of Chemistry.

"This three-dimensional architecture basically eliminates all losses from dead volume in your device," Wiesner said. "More importantly, shrinking the dimensions of these interpenetrated domains down to the nanoscale, as we did, gives you orders of magnitude higher power density. In other words, you can access the energy in much shorter times than what's usually done with conventional battery architectures." How fast is that? Wiesner said that, due to the dimensions of the battery's elements being shrunk down to the nanoscale, "by the time you put your cable into the socket, in seconds, perhaps even faster, the battery would be charged."

The architecture for this concept is based on block copolymer self-assembly, which the Wiesner group has employed for years in other devices, including a gyroidal solar cell and a gyroidal superconductor. Joerg Werner, Ph.D. '15, lead author on this work, had experimented with self-assembling photonic devices, and wondered if the same principles could be applied to carbon materials for energy storage.

The gyroidal thin films of carbon - the battery's anode, generated by block copolymer self-assembly - featured thousands of periodic pores on the order of 40 nanometers wide. These pores were then coated with a 10 nm-thick, electronically insulating but ion-conducting separator through electropolymerization, which by the very nature of the process produced a pinhole-free separation layer.

That's vital, since defects like holes in the separator are what can lead to catastrophic failure giving rise to fires in mobile devices such as cellphones and laptops.

The next step is the addition of the cathode material - in this case, sulfur - in an amount that doesn't quite fill the remainder of the pores. Since sulfur can accept electrons but doesn't conduct electricity, the final step is backfilling with an electronically conducting polymer - known as PEDOT (poly[3,4-ethylenedioxythiophene]).

While this architecture offers proof of concept, Wiesner said, it's not without challenges. Volume changes during discharging and charging the battery gradually degrade the PEDOT charge collector, which doesn't experience the volume expansion that sulfur does.

"When the sulfur expands," Wiesner said, "you have these little bits of polymer that get ripped apart, and then it doesn't reconnect when it shrinks again. This means there are pieces of the 3D battery that you then cannot access."

The group is still perfecting the technique, but applied for patent protection on the proof-of-concept work.

###

Other collaborators on this work included Héctor Abruña, the Emile M. Chamot Professor in the Department of Chemistry and Chemical Biology, and G.G. Rodriguez-Calero, Ph.D. '14, formerly of the Abruña group.

This work was supported as part of the Energy Materials Center at Cornell (emc2), funded by the U.S. Department of Energy as well as in part by the National Science Foundation. Experimentation was conducted at the Cornell Center for Materials Research (CCMR) and the Cornell High Energy Synchrotron Source (CHESS), both of which are supported by the NSF.

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews. For additional information, see this Cornell Chronicle story.

####

For more information, please click here

Contacts:
Jeff Tyson

607-255-7701

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

French Researchers Extend Reach of Mass Spectrometry with Nanomechanical Resonators: Neutral Mass Spectrometry’ Fills Gap In Existing Weighing Technologies November 27th, 2018

Possible Futures

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Self Assembly

High-performance self-assembled catalyst for SOFC October 12th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Discoveries

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Announcements

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Tools

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

Patents/IP/Tech Transfer/Licensing

Arrowhead Pharmaceuticals Announces Closing of Agreements with Janssen October 31st, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Arrowhead Enters $3.7 Billion License and Collaboration Agreements with Janssen October 4th, 2018

Silvaco, Purdue team up to bring scalable atomistic TCAD solutions for next generation semiconductor devices and materials August 24th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer October 25th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project