Home > Press > Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide
![]() |
Hematene created by a Rice University-led team is the first known two-dimensional non-van der Waals material. The transmission electron image shows a single sheet of hematene. Scale bar equals 0.5 microns. (Credit: Shyam Sinha and Peter van Aken/Max Planck Institute for Solid State Research, Stuttgart, Germany) |
Abstract:
In the wake of its recent discovery of a flat form of gallium, an international team led by scientists from Rice University has created another two-dimensional material that the researchers said could be a game changer for solar fuel generation.
Rice materials scientist Pulickel Ajayan and colleagues extracted 3-atom-thick hematene from common iron ore. The research was introduced in a paper today in Nature Nanotechnology.
Hematene may be an efficient photocatalyst, especially for splitting water into hydrogen and oxygen, and could also serve as an ultrathin magnetic material for spintronic-based devices, the researchers said.
"2D magnetism is becoming a very exciting field with recent advances in synthesizing such materials, but the synthesis techniques are complex and the materials' stability is limited," Ajayan said. "Here, we have a simple, scalable method, and the hematene structure should be environmentally stable."
Ajayan's lab worked with researchers at the University of Houston and in India, Brazil, Germany and elsewhere to exfoliate the material from naturally occurring hematite using a combination of sonication, centrifugation and vacuum-assisted filtration.
Hematite was already known to have photocatalytic properties, but they are not good enough to be useful, the researchers said.
"For a material to be an efficient photocatalyst, it should absorb the visible part of sunlight, generate electrical charges and transport them to the surface of the material to carry out the desired reaction," said Oomman Varghese, a co-author and associate professor of physics at the University of Houston.
"Hematite absorbs sunlight from ultraviolet to the yellow-orange region, but the charges produced are very short-lived. As a result, they become extinct before they reach the surface," he said.
Hematene photocatalysis is more efficient because photons generate negative and positive charges within a few atoms of the surface, the researchers said. By pairing the new material with titanium dioxide nanotube arrays, which provide an easy pathway for electrons to leave the hematene, the scientists found they could allow more visible light to be absorbed.
The researchers also discovered that hematene's magnetic properties differ from those of hematite. While native hematite is antiferromagnetic, tests showed that hematene is ferromagnetic, like a common magnet. In ferromagnets, atoms' magnetic moments point in the same direction. In antiferromagnets, the moments in adjacent atoms alternate.
Unlike carbon and its 2D form, graphene, hematite is a non-van der Waals material, meaning it's held together by 3D bonding networks rather than non-chemical and comparatively weaker atomic van der Waals interactions.
"Most 2D materials to date have been derived from bulk counterparts that are layered in nature and generally known as van der Waals solids," said co-author Professor Anantharaman Malie Madom Ramaswamy Iyer of the Cochin University of Science and Technology, India. "2D materials from bulk precursors having (non-van der Waals) 3D bonding networks are rare, and in this context hematene assumes great significance."
According to co-author Chandra Sekhar Tiwary, a former postdoctoral researcher at Rice and now an assistant professor at the Indian Institute of Technology, Gandhinagar, the collaborators are exploring other non-van der Waals materials for their 2D potential.
Iyer and Rice visiting student Aravind Puthirath Balan of Cochin University are lead authors of the study. Co-authors are Sruthi Radhakrishnan, Amey Apte, Carlos de los Reyes, Vidya Kochat, Robert Vajtai, Angel Martí and Gelu Costin of Rice; Cristiano Woellner and Douglas Galvao of the State University of Campinas, Brazil; Shyam Sinha and Peter van Aken of the Max Planck Institute for Solid State Research, Stuttgart, Germany; Liangzi Deng, Banki Manmadha Rao, Maggie Paulose and Ram Neupane of the University of Houston, Ching-Wu Chu of the University of Houston and Lawrence Berkeley National Laboratory, Berkeley, Calif.; and Avetik Harutyunyan of the Honda Research Institute USA Inc., Columbus, Ohio.
Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.
The research was supported by India's Ministry of Human Resource Development, the U.S. Army Research Office Multidisciplinary Research Institute, the Air Force Office of Scientific Research, the São Paulo Research Foundation, the T.L.L. Temple Foundation, the John J. and Rebecca Moores Endowment, the State of Texas, Shell International Exploration and Production Inc. and the Neutrino Observatory.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
David Ruth
713-348-6327
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Rice Department of Materials Science and NanoEngineering:
George R. Brown School of Engineering:
Related News Press |
News and information
Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Graphene/ Graphite
Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019
Scientists image conducting edges in a promising 2-D material February 8th, 2019
Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019
Fluid-inspired material self-heals before your eyes: Coating for metals rapidly heals over scratches and scrapes to prevent corrosion January 30th, 2019
2 Dimensional Materials
Scientists image conducting edges in a promising 2-D material February 8th, 2019
Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019
Laboratories
Helping smartphones hold their charge longer February 6th, 2019
Govt.-Legislation/Regulation/Funding/Policy
NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019
Sensitive sensor detects Down syndrome DNA February 14th, 2019
Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019
Discoveries
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019
Announcements
Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019
Military
NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019
Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019
Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019
Disruptive by Design: Nano Now February 1st, 2019
Energy
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019
Helping smartphones hold their charge longer February 6th, 2019
Current generation via quantum proton transfer February 1st, 2019
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019
Scientists program proteins to pair exactly: Technique paves the way for the creation of protein nanomachines and for the engineering of new cell functions December 21st, 2018
Strem Chemicals, Inc., Receives National Performance Improvement Honor: Company Recognized for Stakeholder Communications December 20th, 2018
Research partnerships
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019
Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019
Scientists image conducting edges in a promising 2-D material February 8th, 2019
Solar/Photovoltaic
Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019
Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter) January 24th, 2019
Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |