Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Engineered polymer membranes could be new option for water treatment

William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame.
CREDIT
Matt Cashore/University of Notre Dame
William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame. CREDIT Matt Cashore/University of Notre Dame

Abstract:
The world's freshwater resources are in short supply. According to the United Nations, water scarcity affects an estimated 1.9 billion people and 2.1 billion people live with drinking water services that are not safely managed. The critical point of water scarcity has led scientists to look for new and efficient ways to make the most of nontraditional sources, including sea water, brackish water and wastewater.

Engineered polymer membranes could be new option for water treatment

Notre Dame, IN | Posted on May 6th, 2018

Polymer membranes, which act as a filter to desalinate and selectively remove contaminants from various water sources, have aided water treatment, but their selectivity remains a significant challenge when it comes to filtering chemical properties -- a potential risk to the environment and human health.

Chemical and biomolecular engineers at the University of Notre Dame and Purdue University studied self-assembled block polymer membranes, which allow for both customizable and uniform pore sizes, as a platform for water treatment systems. The study, published in Nature Partner Journals -- Clean Water, determined the platform has the potential to advance water treatment technologies.

"Most state-of-the-art membranes for water treatment are designed to let water pass through while filtering contaminants," said William Phillip, associate professor in the Department of Chemical and Biomolecular Engineering at Notre Dame. "This approach limits the ability to remove or recover dissolved species based on their chemical identity. The exciting thing about self-assembled block polymer membranes is that you can engineer the nanostructure and pore wall chemistry of the membrane through the design of the block polymer molecules. This capability has the potential to open up a variety of new separation mechanisms that can isolate species based on chemical identity, which in turn could help to enable decentralized reuse of wastewater."

Phillip and the research team focused on block polymer membranes because of their well-defined nanostructures and functionality. They were able to molecularly engineer the chemical properties of the polymer to create large areas of high-performance membrane, reduce pore size and design multifunctional pore wall chemistries for solute-specific separation. The membranes could essentially be customized depending on the water source and treatment needed.

Membranes that are more selective and more resilient to certain exposures such as chlorine or boric acid and less prone to collecting unwanted properties -- or fouling -- than current state-of-the-art options could improve treatment in a number of ways. They could reduce the number of filtration passes required for irrigation, control concentrations of chlorine into the system to help forestall effects of biofouling and reduce chemical demands for membrane cleaning -- reducing operating costs and environmental impact.

The global applications are significant when considering those populations without suitable drinking water and limited resources.

Transitioning the technology from the laboratory setting to practice presents its own set of challenges that will need to be addressed in the coming years. However, the researchers are hopeful the transition can be made since several of the techniques used to generate self-assembled block polymers are consistent with current membrane fabrication practices.

###

Authors of the study include Yizhou Zhang and Jacob L. Weidman at Notre Dame and Noelia E. Almodovar-Arbelo, David S. Corti and Bryan W. Boudouris at Purdue University.

The Army Research Office and the National Science Foundation funded the study.

####

For more information, please click here

Contacts:
Jessica Sieff

574-631-3933

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Possible Futures

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Self Assembly

High-performance self-assembled catalyst for SOFC October 12th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Discoveries

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Announcements

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Military

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

Light makes Rice U. catalyst more effective: Halas lab details plasmonic effect that allows catalyst to work at lower energy October 5th, 2018

Unmasking corrosion to design better protective thin films for metals: Researchers from three universities team up to analyze oxide films at atomic level October 3rd, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Environment

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

Water

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project