Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > A designer's toolkit for constructing complex nanoparticles

A new mix-and-match toolkit allows researchers to create a library of complex nanoparticles that could be used in medical, energy, and electronic applications. First-generation (G-1) spheres, rods, and plates transform into 47 increasingly sophisticated higher-generation (G-2, G-3, G-4) particles through sequences of chemical reactions. In the image, each color represents a distinct type of material, and electron microscope images are shown for several types of particles.
CREDIT
Schaak Laboratory, Penn State
A new mix-and-match toolkit allows researchers to create a library of complex nanoparticles that could be used in medical, energy, and electronic applications. First-generation (G-1) spheres, rods, and plates transform into 47 increasingly sophisticated higher-generation (G-2, G-3, G-4) particles through sequences of chemical reactions. In the image, each color represents a distinct type of material, and electron microscope images are shown for several types of particles. CREDIT Schaak Laboratory, Penn State

Abstract:
A team of chemists at Penn State has developed a designer's toolkit that lets them build various levels of complexity into nanoparticles using a simple, mix-and-match process. "Researchers in areas as diverse as medicine, energy, and electronics often design complex nanoscale particles that are predicted to have useful functions," said Raymond E. Schaak, DuPont Professor of Materials Chemistry at Penn State and the leader of the research team. "But making them in the laboratory is often the bottleneck. Our strategy can help to streamline this process." A paper describing the team's strategy and the large library of particles that they can now make appears May 4, 2018 in the journal Science.

A designer's toolkit for constructing complex nanoparticles

University Park, PA | Posted on May 5th, 2018

Scientists and engineers are getting better and better at designing nanoparticles to split water using sunlight, to diagnose and treat cancer, and to solve other important problems. Many of these 'designer' particles need to include various types of semiconductors, catalysts, magnets, and other materials to function, all while meeting strict requirements involving their size and shape.

"Synthesizing these complex particles becomes a really difficult challenge, because each one of these particles requires a tour-de-force effort to prepare, and that's not always practical," said Schaak. "We wanted to think in a more modular way to make this process easier."

The researchers begin with what they call first-generation particles that have nanometer-scale dimensions and are similar in size to viruses. These are simple, easy-to-make copper sulfide spheres, rods, and plates that serve as springboards for more complex derivatives. These first-generation particles define the initial size and shape, and after replacing some of the copper with other elements such as cadmium and zinc, they are transformed to second-generation particles that now include two materials. The new material is carved into a portion of the original copper sulfide, forming various types of lines or shapes. These lines represent the junctions between the two materials, defining frameworks within the particles and creating two-faced spheres, sandwich spheres, capped rods, striped rods, patchy plates, and marbled plates.

"The junctions bring an additional design element to the table," said Schaak. "Here, the materials within the particles are coupled together at the atomic level, and this can lead to additional functions because the materials can now 'talk' to each other. We can independently tune the outside shape and size of the particles, the materials that are inside the particles, and the ways in which they are connected."

All of the second-generation particles still contain some copper sulfide. This 'leftover' copper sulfide can also be replaced, producing third-generation particles that retain the first-generation size and shape and the second-generation junctions while containing completely different materials than the original first-generation particles. Higher-generation particles are made by further mixing and matching of various techniques and materials. Ultimately, the researchers easily generated a library of 47 distinct nanoparticles from the three simple first-generation spheres, rods, and plates.

Some of the particles the team has made are among the most complex reported to date, including non-symmetrical particles, particles with holes and notches in them, and intricately sculpted particles. "What is most exciting is how easily this works. We can sit down and draw a picture of a really complex particle that was unthinkable months ago, and then go in the lab and make it right away. This is truly a designer's toolkit," said Schaak.

###

In addition to Schaak, the research team included Julie L. Fenton and Benjamin C. Steimle at Penn State. The research was funded by U.S. National Science Foundation.

####

For more information, please click here

Contacts:
Barbara Kennedy

814-863-4682

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Nanofabrication

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Possible Futures

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Chip Technology

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

2D insulators with ferromagnetism are rare; researchers just identified a new one May 10th, 2019

Computing faster with quasi-particles May 10th, 2019

Nanomedicine

Better microring sensors for optical applications May 10th, 2019

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Discoveries

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Announcements

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Energy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Nanobiotechnology

New efficient way to engineer nanostructures mimicking natural immune response complexes: Novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology; the results demonstrate the potential for assembly of multiple proteins and also other materials t May 10th, 2019

Nanotubes enable travel of Huntington's protein: Rhes protein makes its own road to convey disease drivers May 10th, 2019

A cautionary tale for researchers working on selective drug delivery May 9th, 2019

Vaccine design can dramatically improve cancer immunotherapies: Effectiveness depends on molecular architecture and 3D presentation of components May 6th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project