Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations

The Brookhaven/Stony Brook team (from left): Junjie Li, Yimei Zhu, Lijun Wu, Tatiana Konstantinova, and Peter Johnson.
The Brookhaven/Stony Brook team (from left): Junjie Li, Yimei Zhu, Lijun Wu, Tatiana Konstantinova, and Peter Johnson.

Abstract:
Manipulating the flow of energy through superconductors could radically transform technology, perhaps leading to applications such as ultra-fast, highly efficient quantum computers. But these subtle dynamics—including heat dispersion—play out with absurd speed across dizzying subatomic structures.

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations

Upton, NY | Posted on May 4th, 2018

Now, scientists have tracked never-before-seen interactions between electrons and the crystal lattice structure of copper-oxide superconductors. The collaboration, led by scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, achieved measurement precision faster than one trillionth of one second through a groundbreaking combination of experimental techniques.

"This breakthrough offers direct, fundamental insight into the puzzling characteristics of these remarkable materials," said Brookhaven Lab scientist Yimei Zhu, who led the research. "We already had evidence of how lattice vibrations impact electron activity and disperse heat, but it was all through deduction. Now, finally, we can see it directly."

The results, published April 27 in the journal Science Advances, could advance research into powerful, fleeting phenomena found in copper oxides—including high-temperature superconductivity—and help scientists engineer new, better-performing materials.

"We found a nuanced atomic landscape, where certain high-frequency, 'hot' vibrations within the superconductor rapidly absorb energy from electrons and increase in intensity," said first author Tatiana Konstantinova, a PhD student at Stony Brook University doing her thesis work at Brookhaven Lab. "Other sections of the lattice, however, were slow to react. Seeing this kind of tiered interaction transforms our understanding of copper oxides."

Scientists used ultra-fast electron diffraction and photoemission spectroscopy to observe changes in electron energy and momentum as well as fluctuations in the atomic structure.

Other collaborating institutions include SLAC National Accelerator Laboratory, North Carolina State University, Georgetown University, and the University of Duisburg-Essen in Germany.

Vibrations through a crystalline tree

The team chose Bi2Sr2CaCu2O8, a well-known superconducting copper oxide that exhibits the strong interactions central to the study. Even at temperatures close to absolute zero, the crystalline atomic lattice vibrates and very slight pulses of energy can cause the vibrations to increase in amplitude.

"These atomic vibrations are regimented and discrete, meaning they divide across specific frequencies," Zhu said. "We call vibrations with specific frequencies 'phonons,' and their interactions with flowing electrons were our target."

This system of interactions is a bit like the distribution of water through a tree, Konstantinova explained. Exposed to rain, only the roots can absorb the water before spreading it through the trunk and into the branches.

"Here, the water is like energy, raining down on the branching structure of the superconductor, and the soil is like our electrons," Konstantinova said. "But those electrons will only interact with certain phonons, which, in turn, redistribute the energy. Those phonons are like the hidden, highly interactive 'roots' that we needed to detect."

Beam-driven atomic snapshots

The atoms flex and shift on extremely fast timescales—think 100 femtoseconds, or million billionths of a second—and those motions must be pinpointed to understand their effect. And, ideally, dissect and manipulate those interactions.

The team used a custom-grown, layered bismuth-based compound, which can be cleaved into 100 nanometer samples through the relatively simple application of Scotch tape.

The material was then tested using the so-called "pump-probe" technique of million-electron-volt ultrafast electron diffraction (MeV-UED). As in similar time-resolved experiments, a fast light pulse (pump) struck the sample, lasting for just 100 femtoseconds and depositing energy. An electron beam followed, bounced off the crystal lattice, and a detector measured its diffraction pattern. Repeating this process—like a series of atomic snapshots—revealed the rapid, subtle shifting of atomic vibrations over time.

After the initial MeV-UED experiments at Brookhaven Lab, the data collection proceeded at SLAC National Accelerator Laboratory's UED facility during the relocation of the Brookhaven instrument to another building. Colleagues at the SLAC UED facility, led by Xijie Wang, assisted on the experiment.

The electron diffraction, however, only provided half the picture. Using time- and angle-resolved photoemission spectroscopy (tr-ARPES), the team tracked the changes in electrons within the material. An initial laser hit the sample and a second quickly followed—again with 100-femtosecond precision—to kick electrons off the surface. Detecting those flying electrons revealed changes over time in both energy and momentum.

The tr-ARPES experiments were conducted at the facility in University Duisburg-Essen by Brookhaven Lab scientists Jonathan Rameau and Peter Johnson and their German colleagues. Scientists from North Carolina State University and Georgetown University provided theoretical support.

"Both experimental techniques are rather sophisticated and require efforts of experts across multiple disciplines, from laser optics to accelerators and condensed matter physics," Konstantinova said. "The caliber of the instruments and the quality of the sample allowed us to distinguish between different types of lattice vibrations."

The team showed that the atomic vibrations evident in the electron-lattice interactions are varied and, in some ways, counter-intuitive.

When the lattice takes up energy from electrons, the amplitude of high-frequency phonons increases first while the lowest-frequency vibrations increase last. The different rates of energy flow between vibrations means that the sample, when subjected to a burst of photons, moves through novel stages that would be bypassed if simply exposed to heat.

"Our data guides the new quantitative descriptions of nonequilibrium behavior in complex systems," Konstantinova said. "The experimental approach readily applies to other exciting materials where electron-lattice interactions are of major interest."

This work was funded by the DOE Office of Science.

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to scientific paper:

Related News Press

News and information

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

Superconductivity

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Laboratories

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Research Reveals Exotic Quantum States in Double-Layer Graphene: Findings shed new light on the nature of electron interactions in quantum systems and establish a potential new platform for future quantum computers June 26th, 2019

Physics

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Spontaneous synchronisation achieved at the nanoscale July 4th, 2019

New study shows nanoscale pendulum coupling July 3rd, 2019

Govt.-Legislation/Regulation/Funding/Policy

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

Possible Futures

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Discoveries

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Announcements

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Energy

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Black (nano)gold combat climate change July 5th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project