Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Mining for gold with a computer: Texas A&M team gleans new insights on key material

These images show some of the physical characteristics of nanoporous gold at different magnifications.
CREDIT
Texas A&M University
These images show some of the physical characteristics of nanoporous gold at different magnifications. CREDIT Texas A&M University

Abstract:
Engineers from Texas A&M University and Virginia Tech report important new insights into nanoporous gold--a material with growing applications in several areas, including energy storage and biomedical devices--all without stepping into a lab.

Mining for gold with a computer: Texas A&M team gleans new insights on key material

College Station, TX | Posted on May 3rd, 2018

Instead of conducting any additional experiments, the team used image-analysis software developed in-house to "mine" the existing literature on nanoporous gold (NPG). Specifically, the software analyzed photographs of NPG from some 150 peer-reviewed papers, quickly measuring key features of the material that the researchers then correlated with written descriptions of how the samples were prepared. One of the results? A recipe, of sorts, for how to make NPG with specific characteristics.

"We were able to back out a quantitative law that explains how you can change NPG features by changing the processing times and temperatures," said Ian McCue, a postdoctoral researcher in the Texas A&M Department of Materials Science and Engineering. McCue is lead author of a paper on the work published online in the April 30 issue of Scientific Reports.

The team also identified a new parameter related to NPG that could be used to better tune the material for specific applications.

"Before our work, engineers knew of one tunable 'knob' for NPG. Now we have a second one that could give us even more control over the material's properties," said Josh Stuckner, a graduate student at Virginia Tech and co-author of the paper. Stuckner developed the software that allowed the new insights.

Other authors are Dr. Michael J. Demkowicz, associate professor in the materials science and engineering department at Texas A&M, and Dr. Mitsu Murayama, associate professor at Virginia Tech.

Nanoporous gold has been studied for some 15 years, but little is actually known about its physical characteristics and the limits of its tunability for specific applications, the team writes in Scientific Reports.

The material is a three-dimensional porous network of interweaving strands, or ligaments. Multiple ligaments, in turn, connect at points called nodes. All of these features are almost unimaginably small. Stuckner notes, for example, that some of the smaller pores would fit about three strands of DNA side by side. As a result, McCue said the overall structure is very complex and it's been extremely difficult and time-consuming to measure features like the lengths between nodes and the diameters of ligaments. But Stuckner's software has changed that.

"Manually it might take 20 minutes to over an hour to measure the features associated with one image," Stuckner said. "We can do it in a minute, or even just tell the computer to measure a whole slew of images while we walk away."

Earlier attempts to measure NPG features led to very small data sets of five or six data points. The Texas A&M/Virginia Tech team has looked at around 80 data points. That, in turn, allowed the team to create the new quantitative description of NPG features associated with different processing techniques. All that without doing any actual experiments, just clever data-mining and analysis, said McCue.

The work has also led to new publication guidelines for future researchers. Of the 2,000 papers the team originally analyzed, only 150 had useful information.

"We had to throw out a lot of data due to poor image quality or a lack of written information on how a given NPG was processed," McCue said. "The new guidelines could prevent that, ultimately allowing better data mining not only for NPG but for other materials."

####

For more information, please click here

Contacts:
Aubrey Bloom

830-377-8566

Copyright © Texas A&M University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Possible Futures

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Discoveries

Neutrons unlock the secrets of limoncello May 21st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Materials/Metamaterials

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Computing faster with quasi-particles May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Announcements

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Energy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Army discovery opens path to safer batteries May 10th, 2019

Self-powered wearable tech May 8th, 2019

Research partnerships

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project