Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Superconductivity in an alloy with quasicrystal structure

An electron diffraction pattern of Al-Zn-Mg quasicrystal with a dodecahedron forming a Bergman-type cluster.
CREDIT
Keiichiro Imura, Noriaki K. Sato, and Tsutomu Ishimasa
An electron diffraction pattern of Al-Zn-Mg quasicrystal with a dodecahedron forming a Bergman-type cluster. CREDIT Keiichiro Imura, Noriaki K. Sato, and Tsutomu Ishimasa

Abstract:
Extraordinary things happen at low temperatures. One of the best examples is surely superconductivity. This phenomenon, wherein the electrical resistance of a solid drops to zero below a critical temperature, has been known for a century, and now has applications in science and industry. Physics and chemistry students can even make their own levitating magnets from superconducting alloys.

Superconductivity in an alloy with quasicrystal structure

Nagoya, Japan | Posted on March 27th, 2018

Most superconductors, like most solids, are crystalline: their atomic structures are built from periodically repeating cells. Since the 1980s an alternative form of solid, the quasicrystal (QC), has become prominent. Although QCs have symmetry, like crystals, they have no repeat units. This lack of periodicity results in unusual electronic structures. Now, in a study in Nature Communications, a research team led by Nagoya University has discovered superconductivity in a QC for the first time.

The team studied an alloy of aluminum, zinc and magnesium. The crystalline version is known to be superconducting. However, the structure of Al-Zn-Mg depends on the ratio of the three elements. The team found that Al had a crucial effect on the alloy's properties. As study first author Keisuke Kamiya notes, "When we reduced the Al content while keeping the Mg content almost constant, the critical temperature for superconductivity at first decreased gradually from ~0.8 to ~0.2 K. However, at 15% Al, two things happened: the alloy transformed into a quasicrystal, and the critical temperature plummeted to ~0.05 K."

This extremely low critical temperature, just 1/20 of a degree above absolute zero, explains why superconductivity in QCs has proven so hard to achieve. Nonetheless, the QC alloy showed two archetypal features of superconductors: a jump in specific heat at the critical temperature, and the almost total exclusion of magnetic flux from the interior, known as the Meissner effect.

Superconduction in conventional crystals is now well-understood. At sufficiently low temperature, the negatively charged electrons overcome their mutual repulsion and attract one another, teaming up into pairs. These "Cooper pairs" coalesce into a Bose-Einstein condensate, a quantum state of matter with zero electrical resistance. However, the attraction between electrons relies on their interaction with the solid lattice, and conventional theory assumes this is a periodic crystal, rather than a QC.

For the origin of superconduction in the QC alloy, the team considered three possibilities. The most exotic was "critical eigenstates": special electronic states only found near absolute zero. The electronic eigenstates are extended in crystals, and localized in random solids, but the spatial extent of the critical eigenstates in QCs--which are neither periodic nor random--is unclear. However, the team ruled them out based on their measurements. That led back to Cooper pairs, in either the extended or the less-common "weak-coupling" variety. In fact, the alloy closely resembled a typical weak-coupling superconductor.

"It's interesting that the superconductivity of this alloy was not linked to its quasicrystallinity, but resembled that in so-called dirty crystals," says corresponding author Noriaki K. Sato. "However, the theory of quasicrystals also predicts another form of superconduction, based on fractal geometry in QCs. We believe there is a strong possibility that fractal superconductivity makes at least some contribution, and we would be excited to finally measure it."

####

For more information, please click here

Contacts:
Koomi Sung

Copyright © Nagoya University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Discovery of superconductivity in quasicrystal," was published in Nature Communications at DOI:10.1038/s41467-017-02667-x.:

Related News Press

News and information

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Superconductivity

Physicists uncover new competing state of matter in superconducting material January 4th, 2019

Revealing hidden spin: Unlocking new paths toward high-temperature superconductors: Berkeley Lab researchers uncover insights into superconductivity, leading potentially to more efficient power transmission January 4th, 2019

Superfluidity: what is it and why does it matter? December 20th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Possible Futures

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Discoveries

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Announcements

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project