Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity

Abstract:
CEA-Leti, a French technology research institute of the CEA and Inac, a joint fundamental research institute between the CEA and the University Grenoble Alpes, today announced a breakthrough towards large-scale fabrication of quantum bits, or qubits, the elementary bricks of future quantum processors. They demonstrated on a 300 mm pre-industrial platform a new level of isotopic purification in a film deposited by chemical vapor deposition (CVD). This enables creating qubits in thin layers of silicon using a very high purity silicon isotope, 28Si, which produces a crystalline quality comparable to thin films usually made of natural silicon.

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity

Grenoble, France | Posted on March 20th, 2018

“Using the isotope 28Si instead of natural silicon is crucial for the optimization of the fidelity of the silicon spin qubit,” said Marc Sanquer, a research director at Inac. “The fidelity of the spin qubit is limited to small values by the presence of nuclear spins in natural silicon. But spin qubit fidelity is greatly enhanced by using 28Si, which has zero nuclear spin. We expect to confirm this with qubits fabricated in a pre-industrial CMOS platform at CEA-Leti.”

Qubits are the building blocks of quantum information. They can be made in a broad variety of material systems, but when it comes to the crucial issue of large-scale integration, the range of possible choices narrows significantly. Silicon spin qubits have a small size and are compatible with CMOS technology. They therefore present advantages for large-scale integration compared to other types of qubits.

Since 2012, when the first qubits that relied on electron spins were reported, the introduction of isotopically purified 28Si has led to significant enhancement of the spin coherence time. The longer spin coherence lasts, the better the fidelity of the quantum operations.

Quantum effects are essential to understanding how basic silicon micro-components work, but the most interesting quantum effects, such as superposition and entanglement, are not used in circuits. The CEA-Leti and Inac results showed that these effects can be implemented in CMOS transistors operated at low temperature.
CEA-Leti and Inac previously reported preliminary steps for demonstrating a qubit in a process utilizing a natural silicon-on-insulator (SOI) 300 mm CMOS platform1. The qubit is an electrically controlled spin carried by a single hole in a SOI transistor. In a paper published in npj Quantum Information2., CEA-Leti and Inac reported that an electron spin in a SOI transistor can also be manipulated by pure electrical signals, which enable fast and scalable spin qubits.
“To progress towards a practical and useful quantum processor, it is now essential to scale up the qubit,” said Louis Hutin, a research engineer in CEA-Leti’s Silicon Components Division. “This development will have to address variability, reproducibility and electrostatic control quality for elementary quantum bricks, as is done routinely for standard microprocessors.”

To help CEA-Leti and Inac leverage nuclear spin free silicon in the CMOS platform, a silicon precursor was supplied by Air Liquide, using an isotopically purified silane of very high isotopic purity with a 29Si isotope content of less than 0.00250 percent, prepared by the Institute of Chemistry of High-Purity Substances at the Russian Academy of Sciences. The 29Si isotope is present at 4.67 percent in natural silicon and is the only stable isotope of silicon that carries a nuclear spin limiting the qubit coherence time.

A secondary ion mass spectrometry (SIMS) analysis done on the CVD-grown layer using this purified silane precursor showed 29Si concentration less than 0.006 percent, and 30Si less than 0.002 percent, while 28Si concentration was more than 99.992 percent. These unprecedented levels of isotopic purification for a CVD-grown epilayer on 300 mm substrates are associated with surfaces that are smooth at the atomic scale, as verified by atomic force microscopy (AFM), haze and X-ray reflectometry measurements.
Leveraging their scientific and technological expertise, and the specific opportunities associated with the 300 mm silicon platform on the Minatec campus, CEA-Leti and Inac will continue to contribute to the scientific, technological and industrial dynamic on quantum technologies, enhanced by the implementation of the EC’s FET Flagships initiative in this domain.
1. “A CMOS silicon spin qubit”, arXiv:1605.07599 Nature Communications 7, Article number: 13575 (2016) doi:10.1038/ncomms13575

2. “Electrically driven electron spin resonance mediated by spin-valley-orbit coupling in a silicon quantum dot", Nature PJ Quantum Information (2018) 4:6; doi:10.1038/s41534-018-0059-1

####

About Leti
CEA-Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

About Inac (France)
Inac, a joint fundamental research institute between CEA and University Grenoble Alpes with a staff of 500, is a major player in basic research. Its research focuses are on (i) nanoscience, namely photonics, spintronics, nanoelectronics and nanoscience for new technologies for energy; (ii) cryogenic technologies mainly for space and large instruments; (iii) health (DNA damages) & biosensors; and (iv) related simulation and characterization. Inac has three major commitments: (i) creating frontier science results in basic research (350 publications per year); (ii) creating value by ensuring technology transfers (through typ. 20 patents per year, start-ups and partnerships in applied research); and (iii) training of first-class scientists through PhDs (110 ongoing) and postdocs (50 ongoing). http://inac.cea.fr/

For more information, please click here

Contacts:
Press Contact
Agency
+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Quantum Physics

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Physics

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Possible Futures

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Chip Technology

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Quantum Computing

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Industrial

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Researchers present new strategy for extending ductility in a single-phase alloy June 28th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project