Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silk fibers could be high-tech ‘natural metamaterials’

New research suggests fibers from a silkworm’s cocoon may represent “natural metamaterials,” a discovery with various technological and scientific implications. (Purdue University image/Young Kim)
New research suggests fibers from a silkworm’s cocoon may represent “natural metamaterials,” a discovery with various technological and scientific implications. (Purdue University image/Young Kim)

Abstract:
Anderson light localization in biological nanostructures of native silk Seung Ho Choi1†, Seong-Wan Kim2†, Zahyun Ku3†, Michelle A. Visbal-Onufrak1, Seong-Ryul Kim2, Kwang-Ho Choi2, Hakseok Ko4,5, Wonshik Choi4,5, Augustine M. Urbas3, Tae-Won Goo6, and Young L. Kim1,7,8 1Weldon School of Biomedical Engineering, Purdue University, Indiana 47907, USA, 2Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea, 3Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA, 4Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea, 5Department of Physics, Korea University, Seoul 02841, Republic of Korea, 6Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea, 7Regenstrief Center for Healthcare Engineering, Purdue University, Indiana 47907, USA, 8Purdue Quantum Center, Purdue University, Indiana 47907, USA †These authors contributed equally to this work Correspondence: Young Kim, youngkim@purdue.edu Light in biological media is known as freely diffusing because interference is negligible. Here, we show Anderson light localization in quasi-two-dimensional protein nanostructures produced by silkworms (Bombyx mori). For transmission channels in native silk, the light flux is governed by a few localized modes. Relative spatial fluctuations in transmission quantities are proximal to the Anderson regime. The sizes of passive cavities (smaller than a single fibre) and the statistics of modes (decomposed from excitation at the gain-loss equilibrium) differentiate silk from other diffusive structures sharing microscopic morphological similarity. Because the strong reflectivity from Anderson localization is combined with the high emissivity of the biomolecules in infrared radiation, silk radiates heat more than it absorbs for passive cooling. This collective evidence explains how a silkworm designs a nanoarchitectured optical window of resonant tunnelling in the physically closed structures, while suppressing most of transmission in the visible spectrum and emitting thermal radiation.

Silk fibers could be high-tech ‘natural metamaterials’

West Lafayette, IN | Posted on January 31st, 2018

New research has demonstrated how the nano-architecture of a silkworm’s fiber causes “Anderson localization of light,” a discovery that could lead to various innovations and a better understanding of light transport and heat transfer.

The discovery also could help create synthetic materials and structures that realize the phenomenon, named after Nobel laureate Philip Anderson, whose theory describes how electrons can be brought to a complete halt in materials due to their “scattering and defects.” The new findings relate not to electrons, but to light transport.

Researchers demonstrated how the nano-architecture of the silk fibers is capable of light “confinement,” a trait that could provide a range of technological applications including innovations that harness light for new types of medical therapies and biosensing. This light-confinement effect in biological and natural tissue, which was unexpected, is made possible by the Anderson localization of light, said Young Kim, an associate professor in Purdue University’s Weldon School of Biomedical Engineering.

The new findings suggest silk fibers may represent “natural metamaterials” and “natural metastructures,” Kim said. (A YouTube video is available at https://youtu.be/RtgNdibMAhw )

Various research groups have created synthetic “metamaterials” capable of the ultra-efficient control of light. However, metamaterials have limitations because they are often difficult to scale up for commercial production and pose other challenges. Because silk’s nano-architecture is “disordered” instead of meticulously designed periodic structures, the findings suggest a strategy to produce metamaterials that are less expensive to fabricate and manufacture and easier to scale up for industry.

“This is fascinating because realizing Anderson localization of light is extremely challenging, yet we now know that it can be achieved using irregular, disordered nanostructures to create highly packed nanomaterials for strong light scattering as a silkworm produces a silk fiber and spins a cocoon shell in nature,” Kim said.

The findings are detailed in a paper appearing on Wednesday (Jan. 31) in the journal Nature Communications. The paper’s lead author is Purdue postdoctoral research associate Seung Ho Choi.

“Our findings could open up new possibilities for metamaterials and metastructures,” said Kim, who is leading research to better understand the underlying reasons for silk’s white, silvery and lustrous reflection. “I know this is an oxymoron, but we are saying silk fibers represent ‘natural metamaterials’ and ‘natural metastructures.’”

The silk fibers are 10-20 microns in diameter and contain thousands of tiny nanofibrils, each around 100 nanometers wide. For perspective, a human hair is roughly 100 microns in diameter.

A silk fiber has numerous “scattering centers” inside. Anderson localization arises from this light scattering due to disorder in the nanostructure.

“Silk has many nanofibrils, which individually scatter light,” Kim said.

For the Anderson localization to occur, there must be both scattering and interference between scattered light waves. Densely packed irregular nanostructures cause light waves to interfere with each other, sometimes in destructive and sometimes in constructive ways. If constructive, the light is intensified.

“If waves are constructively interfering, this forms a very high energy inside the disordered media,” Choi said.

The small size and roughly parallel arrangement of the nanofibrils are conducive to the effect. The scattering power is maximized when there are many scattering centers and when their size is comparable to the wavelength of the light, both criteria found in the silk fibers.

Whereas commercial optical fibers must be specially engineered with a reflective coating, or cladding, to allow for the confinement of light, the silk fibers are able to achieve the feat naturally due to Anderson localization of light. The Anderson localization creates “modes” that make confinement of light possible without carefully engineered periodic structures. Instead, the same confinement is possible with disordered, more random designs.

“We found that most transmission of light disappears in most of the silk surface. However, counterintuitively, in a small area we found that the energy is confined, and this confined energy is transmitted through localized modes,” Kim said. “The localized mode is a unique pathway for energy flow.”

Although biological structures such as silk diffuse light, other natural materials with similar microstructures do not possess the localized, modes making Anderson localization of light possible.

“Such a difference makes silk particularly interesting for radiative heat transfer.” Kim said. The silk has a high emissivity for infrared light, meaning it readily radiates heat, or infrared radiation, while at the same time being a good reflector of solar light. Because the strong reflectivity from Anderson localization is combined with the high emissivity of the biomolecules in infrared radiation, silk radiates more heat than it absorbs, making it ideal for passive, or “self-cooling.”

“You may have heard that silk underwear can keep you cooler in summertime and warmer in winter,” Kim said. “We have learned the basic mechanism behind this observation.”

The work is led by researchers in Purdue’s Weldon School of Biomedical Engineering; the Department of Agricultural Biology of the National Institute of Agricultural Sciences in South Korea; and the Materials and Manufacturing Directorate of the U.S. Air Force Research Laboratory. A complete list of co-authors is available in the abstract.

“Our findings could open up largely unexplored opportunities for engineering, energy, and biomedical areas,” Kim said. “However, while direct applications could be possible, we really want to learn from silk to help develop material synthesis and design processes in the future.”

The work was funded by the Cooperative Research Program for Agriculture Science & Technology Development in South Korea and the U.S. Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Young L. Kim
765-496-2445


Seung Ho Cho


The materials were produced by
Erin Easterling
Purdue College of Engineering digital producer
765-496-3388

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research paper is available at:

Other video is accessible on Google Drive at:

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Possible Futures

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Nanomedicine

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Military

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Neutrophil nanosponges soak up proteins that promote rheumatoid arthritis September 3rd, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Food/Agriculture/Supplements

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Changing the grocery game: Manufacturing process provides low-cost, sustainable option for food packaging June 26th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Energy

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Producing hydrogen from splitting water without splitting hairs: New model explains interactions between small copper clusters used as low-cost catalysts in the production of hydrogen by breaking down water molecules August 31st, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project