Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Moving nanoparticles using light and magnetic fields

Schematic of the two designs (Credit: Ghosh and Ghosh, Sci. Robot. 3, eaaq0076-2018)
Schematic of the two designs (Credit: Ghosh and Ghosh, Sci. Robot. 3, eaaq0076-2018)

Abstract:
In his 1959 lecture titled ‘There’s plenty of room at the bottom’, Richard Feynman envisioned the possibilities of manipulating and controlling things on a small scale. Today controlled manipulation of nanoscale objects, whose sizes are about a billionth of a metre, is a vast area of research. Manipulation of such nanoparticles requires trapping forces that can be focused and translated precisely. In a recent study, researchers from the Indian Institute of Science, Bengaluru, have designed a novel approach to trap and manoeuvre objects as small as 100 nm.

Moving nanoparticles using light and magnetic fields

Bangalore, India | Posted on January 25th, 2018

A major problem faced with conventional trapping techniques is their inability to hold extremely small sized objects, also called cargo. Imagine picking up grains of salt using only a pair of needles! What makes it tough is that the force required to capture a particle reduces as it’s size decreases.

So far, plasmonic tweezers -- nanosized tweezers made up of noble metals -- are used to trap such small sized cargo (think of a few molecules--that is the size we are talking about!). When illuminated by light, these tweezers create a strong electromagnetic field around themselves that can attract and trap nanoparticles that are close.

However, plasmonic tweezers have a limitation. With a limited range of influence and being fixed in space, these tweezers can only capture nanoparticles in their vicinity; hence being inefficient. “So, it is necessary to design a technique that has the efficiency of a traditional plasmonic tweezer but, at the same time, is manoeuvrable”, says Souvik Ghosh, a researcher from IISc, and a co-author of this study.

In this study, published in the journal Science Robotics, Mr. Ghosh, along with Prof. Ambarish Ghosh from Centre for Nanoscience and Engineering, IISc, have designed a new class of nanotweezers, that combines plasmonic tweezers with micro robots to design ‘mobile nanotweezers’ (MNTs) that bring together the best of both world. These nanotweezers can be driven to the target objects with precise control to capture, transport and release small sized cargo made of various materials with high speed and efficiency. "Microbots can carry/push objects very quickly, but do not work well for sub-micron objects. By combining the functions of these two technologies, we can not only trap but move very small objects very quickly" adds Mr. Ghosh.

The design of these mobile nanotweezers is inspired by microorganisms. Akin to a bacterium that moves by rotating its helical flagellum -- a cellular protrusion used for swimming -- these ferromagnetic, helical nanostructures can be moved by a uniform, rotating magnetic field, which moves and rotates along the direction of the magnetic field. By controlling the magnetic field, the motion of the nanotweezers can be controlled.

The researchers have designed two similar MNTs made of silicon dioxide. Silver and iron, combined with the nanostructures, provide plasmonic properties and magnetic properties. While the first design contains silver nanoparticles distributed across its surface, alternating layers of silver and iron are combined within the structure of the second.

The researchers tested the two designs in a fluid chamber containing some cargo particles. They magnetically steered the nanotweezers towards the cargo and when the chamber was illuminated, they observed that the nanotweezer trapped the cargo which was subsequently maneuvered and released by decreasing the illumination intensity. “The first design works very well for particles that accumulate near hot places like silica particles, while the second is very general and does not care whether the particles like heat or not. For a general application, the second design is preferred”, says Mr. Ghosh.

In addition, the researchers observed that when two particles of different sizes are present in the cargo, by decreasing the illumination, the smaller particle can be released, whereas increasing the frequency of the rotating magnetic field would release the larger particle. This unique sorting behaviour allows the transport of nanoparticles of different sizes by simply varying the two influences.

The researchers also tested their devices beyond plastic and glass particles. They successfully trapped and transported Staphylococcus aureus bacteria and subsequently released it by turning the illumination off. Illumination intensities required by these nanotweezers are almost two orders lower than that can damage living bacteria. Also fluorescent nanodiamonds, an excellent candidate for quantum sensing, was maneuvered using the MNTs.

“From being able to carry live bacteria to placing very small objects such as nanodiamonds and quantum dots at specific positions on a device, their applications could range from biomedicine to quantum technologies, sensor devices and many more”, Prof. A. Ghosh explains to Research Matters.

Apart from carrying small objects to various spots of a microfluidic device, the researchers can also localize them with high spatial resolution and then take them away if necessary. “This should open up new avenues in nanoscale assembly that did not exist before" adds Prof. Ghosh.

What comes next in this ‘small’ journey? “We are working on parallelizing the nanotweezers so that a collection of them can sort and assemble at nanoscale, just like a group of robots would work in an industrial assembly line. This will allow us to scale up our technology and will surely have tremendous commercial impact”, signs off Prof. Ghosh.

Writer: Ananya

####

For more information, please click here

Contacts:
Souvik Ghosh
phone: 91-8277058971

Copyright © Research Matters

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Robotics

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Self-driving microrobots December 10th, 2019

The future of materials with graphene nanotubes starts in Japan September 19th, 2019

Microrobots show promise for treating tumors: Caltech researchers demonstrate a robotic platform for delivering drugs in the human body July 25th, 2019

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Molecular Nanotechnology

DNA origami to scale-up molecular motors June 13th, 2019

Big energy savings for tiny machines May 24th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Discoveries

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Tools

Developing new techniques to improve atomic force microscopy June 26th, 2020

Extremely low thermal conductivity in 1D soft chain structure BiSeX (X = Br, I) June 19th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Oxford Instruments Asylum Research Announces New “Relate” Software for Correlative Imaging with Atomic Force Microscopy and Electron Microscopy June 12th, 2020

Quantum Dots/Rods

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

UTEP researchers help bring biofriendly materials to drug design for neuro disorders June 5th, 2020

Oxford Instruments Asylum Research Releases a New Application Note Introducing Scanning Capacitance Microscopy (SCM) June 3rd, 2020

FSU researchers discover new structure for promising class of materials April 24th, 2020

Quantum nanoscience

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for 'two-faced' nanomaterials may aid energy, information tech June 26th, 2020

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project