Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers from TU Delft combine spintronics and nanophotonics in 2-D material

From spintronics to photonics in a 2D-material

CREDIT
TU Delft/Scixel
From spintronics to photonics in a 2D-material CREDIT TU Delft/Scixel

Abstract:
Spintronics in materials of just a few atoms thick is an emerging field in which the 'spin' of electrons is used to process data, rather than the charge. Unfortunately, the spin only lasts for a very short time, making it (as yet) difficult to exploit in electronics. Researchers from the Kavli Institute of Nanoscience at TU Delft, working with the Netherlands Organisation for Scientific Research's AMOLF institute, have now found a way to convert the spin information into a predictable light signal at room temperature. The discovery brings the worlds of spintronics and nanophotonics closer together and might lead to the development of an energy-efficient way of processing data, in data centres, for example. The researchers have given an account of their results in Science.

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material

Delft, The Netherlands | Posted on January 25th, 2018

The research revolved around a nano-construction consisting of two components: an extremely thin silver thread, and a 2D material called tungsten disulfide. The researchers attached the silver thread to a slice of tungsten disulfide measuring just four atoms in thickness. Using circularly polarised light, they created what are known as 'excitons' with a specific rotational direction. The direction of that spin could be intitialized using the rotational direction of the laser light.

Original state

Excitons are actually electrons that have bounced out of their orbit. With this technique, the laser beam ensures that the electrons are launched into a wider orbit around a positively charged 'hole', in much the same way as a hydrogen atom. The excitons thus created want to return to their original state. On their return to the smaller orbit, they emit an energy package in the form of light. This light contains the spin information, but it emitted in all directions.

To enable the spin information to be put to use, the Delft researchers returned to an earlier discovery. They had shown that when light moves along a nanowire, it is accompanied by a rotating electromagnetic field very close to the wire: it spins clockwise on one side of the wire, and anti-clockwise on the other side. When the light moves in the opposite direction, the spin directions change too. So the local rotational direction of the electromagnetic field is locked one-to-one to the direction with which the light travels along the wire. 'We use this phenomenon as a type of lock combination,' explains Kuipers. 'An exciton with a particular rotational direction can only emit light along the thread if the two rotational directions correspond.'

Opto-electronic switches

And so a direct link is created between the spin information and the propagation direction of the light along the nanowire. It works almost perfectly: the spin information is 'launched' in the right direction along the thread in 90% of cases. In this way, fragile spin information can be carefully converted into a light signal and transported over far greater distances. Thanks to this technique, which works at room temperature, you can easily make new optoelectronic circuitry. Kuipers: 'You don't need a stream of electrons, and no heat is released. This makes it a very low-energy way of transferring information.'

The discovery clears the way for combining the worlds of spintronics and nanophotonics. Kuipers: 'This combination may well result in green information processing strategies at the nanoscale.'

###

In a separate study published in the same issue of Science today, other researchers from the Kavli institute of Nanoscience at TU Delft also found a way to transfer spin information to photons.

####

For more information, please click here

Contacts:
Kobus Kuipers

31-015-278-5116

Copyright © Delft University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

2 Dimensional Materials

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Possible Futures

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Arrowhead Pharmaceuticals Presents Late-Breaking Preliminary Clinical Data on ARO-HBV at Liver Meeting® 2018 November 9th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Spintronics

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Chip Technology

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Quantum Computing

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Optical computing/Photonic computing

AIM Photonics Members Meeting Provides Key Updates on the Initiative’s Progress: Day-Long Engagement in Syracuse, NY, Sees Strong Attendance and Interest from Industry, Government, and Academic Partners November 2nd, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Leti and Taiwanese National Applied Research Laboratories Announce Collaboration for Microelectronics Innovation: Collaboration Will Facilitate Scientific and Technological Exchanges in Microelectronics, Sharing Platforms and Encouraging PhD Student Exchanges October 23rd, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Discoveries

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Materials/Metamaterials

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Announcements

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Photonics/Optics/Lasers

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

AIM Photonics Members Meeting Provides Key Updates on the Initiative’s Progress: Day-Long Engagement in Syracuse, NY, Sees Strong Attendance and Interest from Industry, Government, and Academic Partners November 2nd, 2018

Tiny light detectors work like gecko ears October 30th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project