Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Engineers develop flexible, water-repellent graphene circuits for washable electronics

Jonathan Claussen and his research group are printing and processing graphene ink to make functional materials.

CREDIT
Christopher Gannon/Iowa State University
Jonathan Claussen and his research group are printing and processing graphene ink to make functional materials. CREDIT Christopher Gannon/Iowa State University

Abstract:
New graphene printing technology can produce electronic circuits that are low-cost, flexible, highly conductive and water repellent.

Engineers develop flexible, water-repellent graphene circuits for washable electronics

Ames, IA | Posted on January 24th, 2018

The nanotechnology "would lend enormous value to self-cleaning wearable/washable electronics that are resistant to stains, or ice and biofilm formation," according to a recent paper describing the discovery.

"We're taking low-cost, inkjet-printed graphene and tuning it with a laser to make functional materials," said Jonathan Claussen, an Iowa State University assistant professor of mechanical engineering, an associate of the U.S. Department of Energy's Ames Laboratory and the corresponding author of the paper recently featured on the cover of the journal Nanoscale.

The paper describes how Claussen and the nanoengineers in his research group use inkjet printing technology to create electric circuits on flexible materials. In this case, the ink is flakes of graphene - the wonder material can be a great conductor of electricity and heat, plus it's strong, stable and biocompatible.

The printed flakes, however, aren't highly conductive and have to be processed to remove non-conductive binders and weld the flakes together, boosting conductivity and making them useful for electronics or sensors.

That post-print process typically involves heat or chemicals. But Claussen and his research group developed a rapid-pulse laser process that treats the graphene without damaging the printing surface - even if it's paper.

And now they've found another application of their laser processing technology: taking graphene-printed circuits that can hold water droplets (they're hydrophilic) and turning them into circuits that repel water (they're superhydrophobic).

"We're micro-patterning the surface of the inkjet-printed graphene," Claussen said. "The laser aligns the graphene flakes vertically - like little pyramids stacking up. And that's what induces the hydrophobicity."

Claussen said the energy density of the laser processing can be adjusted to tune the degree of hydrophobicity and conductivity of the printed graphene circuits.

And that opens up all kinds of possibilities for new electronics and sensors, according to the paper.

"One of the things we'd be interested in developing is anti-biofouling materials," said Loreen Stromberg, a paper co-author and an Iowa State postdoctoral research associate in mechanical engineering and for the Virtual Reality Applications Center. "This could eliminate the buildup of biological materials on the surface that would inhibit the optimal performance of devices such as chemical or biological sensors."

The technology could also have applications in flexible electronics, washable sensors in textiles, microfluidic technologies, drag reduction, de-icing, electrochemical sensors and technology that uses graphene structures and electrical simulation to produce stem cells for nerve regeneration.

The researchers wrote that further studies should be done to better understand how the nano- and microsurfaces of the printed graphene creates the water-repelling capabilities.

The current studies have been supported by grants from the National Science Foundation, the U.S. Department of Agriculture's National Institute of Food and Agriculture, the Roy J. Carver Charitable Trust plus Iowa State's College of Engineering and department of mechanical engineering.

The Iowa State University Research Foundation is working to patent the technology and has optioned it to an Ames-based startup, NanoSpy Inc., for possible commercialization. NanoSpy, located at the Iowa State University Research Park, is developing sensors to detect salmonella and other pathogens in food processing plants. Claussen and Stromberg are part of the company.

The graphene printing, processing and tuning technology is turning out to be very useful, Stromberg said. After all, "electronics are being incorporated into everything."

###

The research team

In addition to Jonathan Claussen and Loreen Stromberg, co-authors of the paper describing water-repelling, inkjet-printed graphene circuits are: Suprem Das, an assistant professor of industrial and manufacturing systems engineering at Kansas State University, formerly an Iowa State postdoctoral research associate in mechanical engineering and an associate of the U.S. Department of Energy's Ames Laboratory; Srilok Srinivasan, an Iowa State graduate student in mechanical engineering; Qing He, an Iowa State graduate student in agricultural and biosystems engineering; Nathaniel Garland, an Iowa State graduate student in mechanical engineering; Warren Straszheim, an Iowa State associate scientist with the Materials Analysis and Research Laboratory; Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering, a professor of materials science and nanoengineering and a professor of chemistry at Rice University in Houston; and Ganesh Balasubramanian, an assistant professor of mechanical engineering and mechanics at Lehigh University in Bethlehem, Pennsylvania, formerly an assistant professor of mechanical engineering at Iowa State.

####

For more information, please click here

Contacts:
Jonathan Claussen

515-294-4690

Copyright © Iowa State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the paper

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Graphene/ Graphite

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Flexible Electronics

Arrowhead Pharmaceuticals to Webcast Fiscal 2018 First Quarter Results February 3rd, 2018

Printing Flexible Graphene Supercapacitors December 1st, 2017

Wearable electronics

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Chip Technology

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Materials/Metamaterials

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Joseph N. Pelton named 2017 Lifeboat Foundation Guardian Award Winner February 1st, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Research partnerships

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Nanowire LED Innovator Aledia Announces €30 ($36M) Million Series-C Financing: Intel Capital Joins Existing Investors to Commercialize Certain Nanowire-LED Technologies for Mobile Displays January 29th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Printing Flexible Graphene Supercapacitors December 1st, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project