Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers use sound waves to advance optical communication


Illinois mechanical science and engineering student and lead author of a new study Benjamin Sohn holds a device that uses sound waves to produce optical diodes tiny enough to fit onto a computer chip.

Photo by L. Brian Stauffer
Illinois mechanical science and engineering student and lead author of a new study Benjamin Sohn holds a device that uses sound waves to produce optical diodes tiny enough to fit onto a computer chip. Photo by L. Brian Stauffer

Abstract:
Illinois researchers have demonstrated that sound waves can be used to produce ultraminiature optical diodes that are tiny enough to fit onto a computer chip. These devices, called optical isolators, may help solve major data capacity and system size challenges for photonic integrated circuits, the light-based equivalent of electronic circuits, which are used for computing and communications.

Researchers use sound waves to advance optical communication

Champaign, IL | Posted on January 22nd, 2018

blog posts
CHAMPAIGN, Ill. —Illinois researchers have demonstrated that sound waves can be used to produce ultraminiature optical diodes that are tiny enough to fit onto a computer chip. These devices, called optical isolators, may help solve major data capacity and system size challenges for photonic integrated circuits, the light-based equivalent of electronic circuits, which are used for computing and communications.

Isolators are nonreciprocal or “one-way” devices similar to electronic diodes. They protect laser sources from back reflections and are necessary for routing light signals around optical networks. Today, the dominant technology for producing such nonreciprocal devices requires materials that change their optical properties in response to magnetic fields, the researchers said.

“There are several problems with using magnetically responsive materials to achieve the one-way flow of light in a photonic chip,” said mechanical science and engineering professor and co-author of the study Gaurav Bahl. “First, industry simply does not have good capability to place compact magnets on a chip. But more importantly, the necessary materials are not yet available in photonics foundries. That is why industry desperately needs a better approach that uses only conventional materials and avoids magnetic fields altogether.”

In a study published in the journal Nature Photonics, the researchers explain how they use the minuscule coupling between light and sound to provide a unique solution that enables nonreciprocal devices with nearly any photonic material.

However, the physical size of the device and the availability of materials are not the only problems with the current state of the art, the researchers said.

“Laboratory attempts at producing compact magnetic optical isolators have always been plagued by large optical loss,” said graduate student and lead author Benjamin Sohn. “The photonics industry cannot afford this material-related loss and also needs a solution that provides enough bandwidth to be comparable to the traditional magnetic technique. Until now, there has been no magnetless approach that is competitive.”

The new device is only 200 by 100 microns in size – about 10,000 times smaller than a centimeter squared – and made of aluminum nitride, a transparent material that transmits light and is compatible with photonics foundries. “Sound waves are produced in a way similar to a piezoelectric speaker, using tiny electrodes written directly onto the aluminum nitride with an electron beam. It is these sound waves that compel light within the device to travel only in one direction. This is the first time that a magnetless isolator has surpassed gigahertz bandwidth,” Sohn said.

The researchers are looking for ways to increase bandwidth or data capacity of these isolators and are confident that they can overcome this hurdle. Once perfected, they envision transformative applications in photonic communication systems, gyroscopes, GPS systems, atomic timekeeping and data centers.

“Data centers handle enormous amounts of internet data traffic and consume large amounts of power for networking and for keeping the servers cool,” Bahl said. “Light-based communication is desirable because it produces much less heat, meaning that much less energy can be spent on server cooling while transmitting a lot more data per second.”

Aside from the technological potential, the researchers can’t help but be mesmerized by the fundamental science behind this advancement.

“In everyday life, we don’t see the interactions of light with sound,” Bahl said. “Light can pass through a transparent pane of glass without doing anything strange. Our field of research has found that light and sound do, in fact, interact in a very subtle way. If you apply the right engineering principles, you can shake a transparent material in just the right way to enhance these effects and solve this major scientific challenge. It seems almost magical.”

The United States Defense Advanced Research Projects Agency and the Air Force Research Laboratory supported this research.

####

For more information, please click here

Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
217-244-2788


Gaurav Bahl
217-300-2194

Copyright © UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits” is available online:

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Chip Technology

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Optical computing/Photonic computing

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Military

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project