Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum)

Abstract:
Leti, a research institute of CEA Tech, and CloudNet IT-Solutions, a Scottish SME specializing in TVWS (TV White Space), today announced field trial results for a new flexible multicarrier system in the Orkney Islands designed to demonstrate a new post-OFDM (orthogonal frequency-division multiplexing) multicarrier waveform.

Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum)

Grenoble, France and Kirkwall, UK | Posted on December 18th, 2017

The trial showed that the post-OFDM multicarrier waveform, a block filtered-OFDM (BF-OFDM), can overcome all shortcomings inherent in actual OFDM waveforms (WiFi/LTE) and is backward compatible with existing receivers.

“The results of these field trials enhance Leti’s technology-to-system offer for its industrial partners in the context of telecom applications and ad-hoc proprietary radio solutions for vertical sectors,” said Dimitri Ktenas, Leti wireless lab manager. “Leti’s patented technology unlocks the usage of spectrum sharing, such as License Shared Access in TVWS and CBRS (Citizens Broadband Radio Service) at 3.5GHz.”

Leti was granted in January 2017 an 18-month license from Arcep, France’s telecommunications regulatory agency, to run a field trial with multiservice transmission at 3.5 GHz TDD band, and continues to deploy its patented multicarrier technology on broadband wireless channels. In the Orkney Islands field trial, Leti demonstrated the flexibility as well as the performance of the technology in terms of spectral efficiency in the 700 MHz TVWS band for rural broadband and maritime broadband radio scenarios. The measurements were supported under the framework of the H2020 EU-funded GateOne project.

Leti’s post-OFDM multicarrier waveform is designed to achieve good frequency localization and support simultaneous single-carrier and multicarrier modulations, along with classical multi-antenna systems, e.g. multiple-input/multiple-output (MIMO) solutions. The duration of the elementary communication slot is configurable and can be adapted to the targeted latency and channel conditions. In addition, classical multi-user (MU) access can be used on top of it, and even combined with MIMO, leading to MU-MIMO technologies in fragmented spectrum scenarios.

The Orkney Islands deployment assessed performance of a broadband transmission in a 16MHz fragmented spectrum channel, while fitting with ETSI EN 301 598 TVWS regulation. The measurements performed at the beginning of November strongly validated the trial’s innovative concepts in a real-life situation. Rural broadband content delivery was demonstrated up to 20km, using non-contiguous channels. Leti’s over-the-air versatile and portable test platform based on field-programmable gate arrays (FPGA), ARM processors and agile RF front-end was used to demonstrate a broadband transmission. The same set of equipment is also part of the 5G Leti testbed under evaluation in the future 5G 3.5GHz band.

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro- & nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. This year, the institute celebrates its 50th anniversary. Follow us on www.leti-cea.com and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

Follow us on www.leti.fr/en and @CEA_Leti.

For more information, please click here

Contacts:
Sarah-Lyle Dampoux
Mahoney l Lyle
+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Wireless/telecommunications/RF/Antennas/Microwaves

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Alliances/Trade associations/Partnerships/Distributorships

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project