Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery

Institute for Protein Design & Cognition Studio
Synthetic nucleocapsids composed of computationally designed proteins that can package their own RNA genomes providing a blank slate to evolve useful properties for drug delivery and other biomedical applications.
Institute for Protein Design & Cognition Studio

Synthetic nucleocapsids composed of computationally designed proteins that can package their own RNA genomes providing a blank slate to evolve useful properties for drug delivery and other biomedical applications.

Abstract:
Protein assemblies, designed and built from scratch to carry molecular cargo, are advancing both synthetic life research and engineering efforts for targeted drug delivery.

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery

Seattle, WA | Posted on December 15th, 2017

Scientists have succeeded in developing the first reported synthetic protein assemblies that encapsulate their own genetic materials and evolve new traits in complex environments.

The project is reported this week in the scientific journal, Nature. The lead authors of the paper are Gabriel L. Butterfield and Marc J. Lajoie at the University of Washington Institute for Protein Design.

The advance stems from molecular engineering projects at UW Medicine and other areas of the University of Washington to create targeted drug delivery systems. The synthetic protein assemblies were computationally designed. They did not exist previously until they were formed in a lab.

The scientists created these assemblies in their search for new ways to transport therapeutic cargos into specific types of cells without using viruses as vehicles.

"Targeted drug delivery is a major unsolved need in medicine," Lajoie noted, "Currently, researchers are using viruses, which are effective, but difficult to engineer, or they are using polymeric nanoparticles, which are engineerable, but less effective at targeted delivery."

In addition to their potential for biomedical applications, the newly designed protein assemblies could be groundbreaking in synthetic life research. They are believed to be the first fully synthetic assemblies to package their own genetic materials and evolve new traits. These are functions normally associated with living things.

The work was conducted in the laboratories of UW Medicine researchers David Baker, professor of biochemistry, and Neil King, assistant professor of biochemistry, both at the UW School of Medicine; and Suzie Pun, the Robert F. Rushmer Professor of Bioengineering at the UW.

The new protein assemblies are synthetic versions of nucleocapsids - genome containers. Most viruses surround their genetic material with a protein shell. The synthetic nucleocapsids were built to resemble a virus shell, which, like the hold of an aircraft or ship, can protect and deliver cargo.

Lajoie explained that, unlike living viruses, these synthetic genetic cargo-carriers can't copy themselves to reproduce. Butterfield added, "Still, they rival viruses in genome packaging efficiency, and are much simpler and easier to engineer."

Combining computational design with evolution provides a fresh opportunity to develop new biological functions. In this way, the researchers observed, complex properties required for biomedical applications were introduced into these protein assemblies. These included improvements in their ability to package RNA, enhanced resistance to blood (which has substances that would usually degrade such assemblies), and a longer circulation time in living mice.

Improvements in each property came from changes to specific regions of the capsid. Initial packaging came from redesigning the interior to electrostatically capture RNA. Following this, evolutionary steps were: evolving the interior to better foster RNA packaging, evolving protection against RNA damaging enzymes and other destroyers in the blood, and evolving the exterior to increase circulation time in living mice.

Packaging genetic material is critical for living things. It preserves the code of life which occurs in chemical form as DNA or RNA molecules.

"We designed synthetic nucleocapsids from scratch based on two completely unrelated proteins," Lajoie said. "This is exciting because we were able to design functions that are essential for life without having to use existing cells as a template."

Future work will carry on the combined design-and-evolve strategy to try to optimize the function of the protein assemblies in complex settings, such as those in live tissues.

"We were surprised at how efficiently evolution solved our problems so far. We hope that this will continue as we pursue our next goals: delivering therapeutic cargos to specific cells in animals," Butterfield said.

###

The work was funded by the Howard Hughes Medical Institute, the Bill and Melinda Gates Foundation, the Defense Advances Research Projects Agency (DARPA), the National Institutes of Health, the National Science Foundation, the Washington Research Foundation and the Cancer Research Institute.

Other researchers on the study were Heather H. Gustafson, Drew L. Sellers, Una Nattermann, Daniel Ellis, Jacob B. Bale, Sharon Ke, Garreck H. Lenz, Angelica Yehdego, and Rashmi Ravichandran.

####

For more information, please click here

Contacts:
Leila Gray

206-685-0381

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Synthetic Biology

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level April 16th, 2018

Quantum physicists achieve entanglement record: Largest entangled quantum register of individually controllable systems to date April 15th, 2018

Possible Futures

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Nanomedicine

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Bloodless revolution in diabetes monitoring: Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test April 10th, 2018

Discoveries

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Announcements

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Military

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant March 16th, 2018

Flat gallium joins roster of new 2-D materials: Rice University, Indian Institute of Science introduce gallenene March 12th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

Thermo Scientific Krios G3i Cryo-Electron Microscope Wins Gold Edison Award: Krios G3i helps scientists better understand disease mechanisms in order to accelerate cures April 12th, 2018

Bloodless revolution in diabetes monitoring: Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test April 10th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Nanobiotechnology

Observing biological nanotransporters: Chemistry April 19th, 2018

Nanobiotix Shows NBTXR3 Nanoparticles Can Stoke Anti-Tumor Immune Response April 17th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Bloodless revolution in diabetes monitoring: Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test April 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project