Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery

Institute for Protein Design & Cognition Studio
Synthetic nucleocapsids composed of computationally designed proteins that can package their own RNA genomes providing a blank slate to evolve useful properties for drug delivery and other biomedical applications.
Institute for Protein Design & Cognition Studio

Synthetic nucleocapsids composed of computationally designed proteins that can package their own RNA genomes providing a blank slate to evolve useful properties for drug delivery and other biomedical applications.

Abstract:
Protein assemblies, designed and built from scratch to carry molecular cargo, are advancing both synthetic life research and engineering efforts for targeted drug delivery.

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery

Seattle, WA | Posted on December 15th, 2017

Scientists have succeeded in developing the first reported synthetic protein assemblies that encapsulate their own genetic materials and evolve new traits in complex environments.

The project is reported this week in the scientific journal, Nature. The lead authors of the paper are Gabriel L. Butterfield and Marc J. Lajoie at the University of Washington Institute for Protein Design.

The advance stems from molecular engineering projects at UW Medicine and other areas of the University of Washington to create targeted drug delivery systems. The synthetic protein assemblies were computationally designed. They did not exist previously until they were formed in a lab.

The scientists created these assemblies in their search for new ways to transport therapeutic cargos into specific types of cells without using viruses as vehicles.

"Targeted drug delivery is a major unsolved need in medicine," Lajoie noted, "Currently, researchers are using viruses, which are effective, but difficult to engineer, or they are using polymeric nanoparticles, which are engineerable, but less effective at targeted delivery."

In addition to their potential for biomedical applications, the newly designed protein assemblies could be groundbreaking in synthetic life research. They are believed to be the first fully synthetic assemblies to package their own genetic materials and evolve new traits. These are functions normally associated with living things.

The work was conducted in the laboratories of UW Medicine researchers David Baker, professor of biochemistry, and Neil King, assistant professor of biochemistry, both at the UW School of Medicine; and Suzie Pun, the Robert F. Rushmer Professor of Bioengineering at the UW.

The new protein assemblies are synthetic versions of nucleocapsids - genome containers. Most viruses surround their genetic material with a protein shell. The synthetic nucleocapsids were built to resemble a virus shell, which, like the hold of an aircraft or ship, can protect and deliver cargo.

Lajoie explained that, unlike living viruses, these synthetic genetic cargo-carriers can't copy themselves to reproduce. Butterfield added, "Still, they rival viruses in genome packaging efficiency, and are much simpler and easier to engineer."

Combining computational design with evolution provides a fresh opportunity to develop new biological functions. In this way, the researchers observed, complex properties required for biomedical applications were introduced into these protein assemblies. These included improvements in their ability to package RNA, enhanced resistance to blood (which has substances that would usually degrade such assemblies), and a longer circulation time in living mice.

Improvements in each property came from changes to specific regions of the capsid. Initial packaging came from redesigning the interior to electrostatically capture RNA. Following this, evolutionary steps were: evolving the interior to better foster RNA packaging, evolving protection against RNA damaging enzymes and other destroyers in the blood, and evolving the exterior to increase circulation time in living mice.

Packaging genetic material is critical for living things. It preserves the code of life which occurs in chemical form as DNA or RNA molecules.

"We designed synthetic nucleocapsids from scratch based on two completely unrelated proteins," Lajoie said. "This is exciting because we were able to design functions that are essential for life without having to use existing cells as a template."

Future work will carry on the combined design-and-evolve strategy to try to optimize the function of the protein assemblies in complex settings, such as those in live tissues.

"We were surprised at how efficiently evolution solved our problems so far. We hope that this will continue as we pursue our next goals: delivering therapeutic cargos to specific cells in animals," Butterfield said.

###

The work was funded by the Howard Hughes Medical Institute, the Bill and Melinda Gates Foundation, the Defense Advances Research Projects Agency (DARPA), the National Institutes of Health, the National Science Foundation, the Washington Research Foundation and the Cancer Research Institute.

Other researchers on the study were Heather H. Gustafson, Drew L. Sellers, Una Nattermann, Daniel Ellis, Jacob B. Bale, Sharon Ke, Garreck H. Lenz, Angelica Yehdego, and Rashmi Ravichandran.

####

For more information, please click here

Contacts:
Leila Gray

206-685-0381

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Synthetic Biology

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Possible Futures

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Nanomedicine

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

CEA-Leti Breakthrough Opens Path to New Vaccine for HIV: Lipidots Platform Strengthens Immune Response to Protein That Is Key to HIV Vaccine; Results Presented in Nature Publishing Group’s npj Vaccines February 27th, 2019

Discoveries

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Military

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Nanobiotechnology

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

Nanotechnology Gives Mice Night Vision—Are Humans Next? March 2nd, 2019

CEA-Leti Breakthrough Opens Path to New Vaccine for HIV: Lipidots Platform Strengthens Immune Response to Protein That Is Key to HIV Vaccine; Results Presented in Nature Publishing Group’s npj Vaccines February 27th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project