Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent

Schematics of fiber-coupled superconducting nanowire single photon detector.
CREDIT
©Science China Press
Schematics of fiber-coupled superconducting nanowire single photon detector. CREDIT ©Science China Press

Abstract:
Superconducting nanowire single-photon detectors (SNSPDs) offer significant improvement on detection efficiency (DE) compared to their semiconducting counterparts, having enabled many breakthrough applications in quantum information technologies. The team headed by Prof. Lixing You from Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences (CAS) (also affiliated to CAS Center for Excellence in Superconducting Electronics (CENSE)) first demonstrated the fabrication and operation of a NbN-SNSPD with system detection efficiency over 90% at 2.1 K at a wavelength of 1550 nm, which paves the way for practical application of SNSPD (Figure 1).

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent

Beijing, China | Posted on November 9th, 2017

The results were published recently on SCIENCE CHINA Physics, Mechanics & Astronomy [1] as a cover image story. Dr. Weijun Zhang is the first author and Dr. Lixing You is the corresponding author.

At 1550 nm, which is the most important wavelength for applications, the state of the art SNSPD made of WSi superconductor has reached a DE record of 93% [2], compared to InGaAs detector with DE ~30%. Unfortunately, WSi-SNSPD usually operates at sub-kelvin temperatures, requiring expensive and user unfriendly refrigeration equipment.

Extensive efforts are made on the development of SNSPDs based on NbN, targeted at operating temperature above 2K, accessible to inexpensive and user-friendly compact cryocoolers. With a decade research, the detection efficiency of NbN-SNSPDs were gradually increased to ~ 80%. However, further improvements are not reported. Achieving DE over 90% requires the simultaneous optimization of many different factors, including near perfect optical coupling, near perfect absorption, and near unity intrinsic quantum efficiency. Previous attempts at doing this have mostly been made through a process of trial and error.

This paper first reported a NbN-SNSPD system based on G-M cryocooler with system detection efficiency over 90% (at dark count rate of 10 Hz) at 2.1 K at a wavelength of 1550 nm. The efficiency of the device saturates to 92% when the temperature is lowered to 1.8 K.

The success of this device has been the result of using an integrated Distributed Bragg Reflector (DBR) cavity offering near unity refection at the interface, and through systematic optimization of the NbN nanowire's meandered geometry. The joint efforts enable researchers to simultaneously achieve the stringent requirements for coupling, absorption and intrinsic quantum efficiency. What is more, the device exhibit timing jitters down to 79 ps, almost half that of previously reported WSi-SNSPD, promising additional advantages in applications requiring high timing precision. The devices have been applied to the quantum information frontier experiments in University of Science and Technology of China.

SNSPD with near unity detection efficiency operational on economical and user-friendly compact cryocooler will provide researchers a powerful and easy accessible tool, envisage further breakthrough in quantum information areas such as optical quantum computation/simulation, quantum key distribution etc., in a foreseeable near future. Aiming to this niche and growing market, Dr. You et al also founded a start-up company (Shanghai Photon Technology CO LTD, http://www.sconphoton.com/ ) to commercialize the technology.

The SNSPDs with start-of-art performance from SIMIT have provided key support to quantum communication of China. Collaborated with JW Pan's group, many world records on fiber quantum key distribution have been made including the current record of the longest distance of 404 km [3]. Dr. You believes that there is still room for further improving the detection efficiency of NbN SNSPD. In the new National Key R&D Program of China kicked off in July of 2017 directed by Dr. You, the new target of the detection efficiency is 93-95%.

###

This research was funded by National Key R&D Program of China (2017YFA0304000); Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB04010200); National Natural Science Foundation of China (91121022, 61401441, and 61401443) and the Science and Technology Commission of Shanghai Municipality (16JC1400402)

####

For more information, please click here

Contacts:
YOU Lixing

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

[1] W. J. Zhang, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature, Sci. China-Phys. Mech. Astron. 60, 120314 (2017) :

[2] F. Marsili, et al. Detecting single infrared photons with 93% system efficiency. Nature Photonics 7(3): 210-214 (2013):

[3] H.-L. Yin, et al. Measurement-Device-Independent Quantum Key Distribution Over a 404 km Optical Fiber. Physical Review Letters 117(19): 190501. (2016):

See the article: W. J. Zhang, et al. NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature, Sci. China-Phys. Mech. Astron. 60, 120314 (2017):

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project