Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images

This is an example of silicon atoms represented in color.
CREDIT
2017 Hideki Kawakatsu, Kawakatsu Laboratory, Institute of Industrial Science, The University of Tokyo.
This is an example of silicon atoms represented in color. CREDIT 2017 Hideki Kawakatsu, Kawakatsu Laboratory, Institute of Industrial Science, The University of Tokyo.

Abstract:
A French and Japanese research group has developed a new way of visualizing the atomic world by turning data scanned by an atomic force microscope into clear color images. The newly developed method, which enables observation of materials and substances like alloys, semiconductors, and chemical compounds in a relatively short time, holds promise of becoming widely used in the research and development of surfaces and devices.

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images

Paris, France and Tokyo, Japan | Posted on October 19th, 2017

Individual molecules and atoms are much smaller than the wavelengths of light that we can see. Visualizing such tiny structures requires special instruments that often provide black-and-white representations of the positions of atoms. Atomic force microscopes (AFMs) are among the most powerful tools available for probing surfaces at the atomic scale level. A nanoscale tip moving over a surface can not only give all kinds of information about the physical positions of atoms but also give data on their chemical properties and behavior. However, much of this information is lost when the AFM signals are processed.

Now, researchers centered at the University of Tokyo's Institute of Industrial Science (IIS), led by Professor Hideki Kawakatsu, have created a new way of operating AFMs and visualizing the data to extract structural and chemical information into clear, full-color images. These findings were recently published in Applied Physics Letters.

"AFM is an extremely versatile technique and our approach of linking the AFM tip height to the bottom of the frequency curve enabled us to perform measurements at the same time but without the risk of losing information from the surface," study lead author Pierre Etienne Allain, a LIMMS/CNRS-IIS postdoctoral researcher, says.

People often perform AFM measurements by keeping the AFM tip at a fixed height while measuring changes in its vibrations as it interacts with the surface. Alternatively, it is possible to move the AFM tip up and down so that the frequency of the vibrations stays the same. Both these approaches have their advantages, but they also carry disadvantages in that one can be very time consuming, and the other can result in loss of information.

The IIS-led researchers developed a way of moving the AFM tip and transforming the data so the tip stays above the surface in a position where the vibrational frequency is strongly influenced by the surface.

Another benefit of this approach is that the model yields three variables, to which the researchers assigned the colors red, blue, and green, respectively, thereby enabling them to produce full-color images. They also successfully tested their method on a silicon surface.

"If the colors in the image are the same, we can say the signals come from the same type of atom and surroundings," coauthor and fellow postdoctoral researcher Denis Damiron says. "This new way of representing complex chemical and physical information from a surface could let us probe the movements and behavior of atoms in unprecedented detail."

Collaborating institutions:

CNRS
The University of Electro-Communications

Funding:

CNRS, MEXT, JST, IIS UTokyo, the JSPS Postdoctoral Fellowship and Core-to-Core Programs

####

About University of Tokyo
The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

For more information, please click here

Contacts:
Research contact:

Professor Hideki Kawakatsu
Centre for Interdisciplinary Research on Micro-Nano Methods (CIRMM), Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Tel: +81-3-5452-6201
Fax:+81-3-5452-6199
Email:

Press officer contact:

Megumi Ijichi
Public Relations Office
Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Tel: +81-3-5452-6738
Fax: +81-3-5452-6746
Email:

Copyright © University of Tokyo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal article:

Institute of Industrial Science, The University of Tokyo:

Kawakatsu lab:

LIMMS:

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Imaging

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Videos/Movies

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Govt.-Legislation/Regulation/Funding/Policy

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Possible Futures

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Chip Technology

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Tools

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Research partnerships

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project