Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies

Rice University scientists found they could selectively alter resonant frequencies (graph) of gold nanodisks by grouping them with slightly different placement and spacing. (Image courtesy of C. Yi/Rice University)
Rice University scientists found they could selectively alter resonant frequencies (graph) of gold nanodisks by grouping them with slightly different placement and spacing. (Image courtesy of C. Yi/Rice University)

Abstract:
Like a tuning fork struck with a mallet, tiny gold nanodisks can be made to vibrate at resonant frequencies when struck by light. In new research, Rice University researchers showed they can selectively alter those vibrational frequencies by gathering different-sized nanodisks into groups.

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies

Houston, TX | Posted on October 16th, 2017

SUMMARY:
Like a tuning fork struck with a mallet, tiny gold nanodisks can be made to vibrate at resonant frequencies when struck by light. In new research this week, Rice University chemist Stephan Link and colleagues showed how to selectively alter those vibrational frequencies by gathering different-sized nanodisks into groups.

a-RiceLogo-72dpi-3in

Rice University
Office of Public Affairs / News & Media Relations

David Ruth
713-348-6327


Jade Boyd
713-348-6778


Rice U. study: Vibrating nanoparticles interact
Placing nanodisks in groups can change their vibrational frequencies

HOUSTON -- (Oct. 16, 2017) -- Like a tuning fork struck with a mallet, tiny gold nanodisks can be made to vibrate at resonant frequencies when struck by light. In new research, Rice University researchers showed they can selectively alter those vibrational frequencies by gathering different-sized nanodisks into groups.

"In the tuning fork analogy, it would be as if we could alter the sounds of several forks by bringing them close together," said Rice nanoscientist Stephan Link, the lead researcher on a study in this week's Proceedings of the National Academy of Sciences. "But at the nanoscale, we do not hear a tonal shift; we instead see a tiny change in color. We've shown that by grouping nanodisks, we can shift their acoustic resonance in an orderly and predictable way, which could be useful in optomechanics."

Optomechanics is a merged branch of physics, materials science and nanophotonics that focuses on the interactions between light and mechanical devices. Optomechanical systems are used in telecommunications, microscopy, quantum computing and sensors, including the laser interferometers that detected the first gravity waves in 2016.

Rice postdoctoral research associate Chongyue Yi and colleagues in Link's lab and the research group of Rice nanophotonics pioneer Naomi Halas created and tested more than a dozen sample groupings of nanodisks using electron beam lithography. Each group of tiny gold disks sat atop a flat surface called a substrate, which was sometimes ordinary glass and sometimes aluminum oxide. Yi, the study's first author, oversaw tests on nanodisks ranging in size from 78 to 178 nanometers in diameter, which were configured in patterns containing two to 12 disks.

Yi used two sets of laser beams to test the resonance of the groups. A pulse laser was used to strike the disks, which added a burst of energy analogous to the mallet striking the tuning fork. The light pulse provided an almost instant burst of heat, which caused the metal disks to expand and contract very fast, several billion times each second. A second laser beam was used to probe these vibrations by detecting tiny changes in their color in a microscope. The color was due to surface plasmons, coherent oscillations of conduction band electrons, which experienced intensity fluctuations with the frequency or speed at which the disks expanded and contracted.

Link and Yi's experiments showed the resonant frequency of smaller disks shifted about 20 percent when they were placed near larger disks. In collaboration with theorists at Rice and the University of Melbourne, the researchers determined that the acoustic vibrations from larger particles were traveling through the substrate to modify the resonances of smaller particles. To test this explanation, Yi conducted further experiments to show he could predictably alter the vibration frequencies of his samples by varying their size and distance as well as the surfaces to which they were attached.

"It really depends on what substrate we are using," Yi said. "With glass, the frequency change is larger than with aluminum oxide. Glass is softer. If the material is more stiff, it is harder to make it vibrate."

Link said the research points to a new way for engineers to convert light energy into mechanical energy and vice versa at the nanoscale.

"This gives us a new knob for precise tuning of the light output from metallic nanostructures," he said. "It opens the door for new applications in secure communications, sensing and more."

Study co-authors include Naomi Halas, Pratiksha Dongare, Man-Nung Su, Wenxiao Wang, Fangfeng Wen, Wei-Shun Chang and Peter Nordlander, all of Rice, and Debadi Chakraborty and John Sader, both of the University of Melbourne.

The research was supported by the Welch Foundation, the Army Research Office, the Air Force Office for Scientific Research, the National Science Foundation and the Australian Research Council.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The DOI of the PNAS paper is: 10.1073/pnas.1712418114

Related News Press

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project