Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spin current detection in quantum materials unlocks potential for alternative electronics

A new microscopy method developed by an ORNL-led team has four movable probing tips, is sensitive to the spin of moving electrons and produces high-resolution results. Using this approach, they observed the spin behavior of electrons on the surface of a quantum material.
CREDIT
Saban Hus and An-Ping Li/Oak Ridge National Laboratory, U.S. Dept. of Energy
A new microscopy method developed by an ORNL-led team has four movable probing tips, is sensitive to the spin of moving electrons and produces high-resolution results. Using this approach, they observed the spin behavior of electrons on the surface of a quantum material. CREDIT Saban Hus and An-Ping Li/Oak Ridge National Laboratory, U.S. Dept. of Energy

Abstract:
A new method that precisely measures the mysterious behavior and magnetic properties of electrons flowing across the surface of quantum materials could open a path to next-generation electronics.

Spin current detection in quantum materials unlocks potential for alternative electronics

Oak Ridge, TN | Posted on October 15th, 2017

Found at the heart of electronic devices, silicon-based semiconductors rely on the controlled electrical current responsible for powering electronics. These semiconductors can only access the electrons' charge for energy, but electrons do more than carry a charge. They also have intrinsic angular momentum known as spin, which is a feature of quantum materials that, while elusive, can be manipulated to enhance electronic devices.

A team of scientists, led by An-Ping Li at the Department of Energy's Oak Ridge National Laboratory, has developed an innovative microscopy technique to detect the spin of electrons in topological insulators, a new kind of quantum material that could be used in applications such as spintronics and quantum computing.

"The spin current, namely the total angular momentum of moving electrons, is a behavior in topological insulators that could not be accounted for until a spin-sensitive method was developed," Li said.

Electronic devices continue to evolve rapidly and require more power packed into smaller components. This prompts the need for less costly, energy-efficient alternatives to charge-based electronics. A topological insulator carries electrical current along its surface, while deeper within the bulk material, it acts as an insulator. Electrons flowing across the material's surface exhibit uniform spin directions, unlike in a semiconductor where electrons spin in varying directions.

"Charge-based devices are less energy efficient than spin-based ones," said Li. "For spins to be useful, we need to control both their flow and orientation."

To detect and better understand this quirky particle behavior, the team needed a method sensitive to the spin of moving electrons. Their new microscopy approach was tested on a single crystal of Bi2Te2Se, a material containing bismuth, tellurium and selenium. It measured how much voltage was produced along the material's surface as the flow of electrons moved between specific points while sensing the voltage for each electron's spin.

The new method builds on a four-probe scanning tunneling microscope--an instrument that can pinpoint a material's atomic activity with four movable probing tips--by adding a component to observe the spin behavior of electrons on the material's surface. This approach not only includes spin sensitivity measurements. It also confines the current to a small area on the surface, which helps to keep electrons from escaping beneath the surface, providing high-resolution results.

"We successfully detected a voltage generated by the electron's spin current," said Li, who coauthored a paper published by Physical Review Letters that explains the method. "This work provides clear evidence of the spin current in topological insulators and opens a new avenue to study other quantum materials that could ultimately be applied in next-generation electronic devices."

###

Additional coauthors of the study titled, "Detection of the Spin-Chemical Potential in Topological Insulators Using Spin-Polarized Four-Probe STM," include ORNL's Saban Hus, Giang Nguyen, Wonhee Ko and Arthur Baddorf; X.-G. Zhang of the University of Florida; and Yong Chen of Purdue University.

This research was conducted at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. The development of the novel microscopy method was funded by ORNL's Laboratory Directed Research and Development program.

####

About Oak Ridge National Laboratory
ORNL is managed by UT-Battelle for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/ .

For more information, please click here

Contacts:
Sara Shoemaker

865-576-9219

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Laboratories

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Nanotech Artisans Sculpt with DNA November 5th, 2018

Leti and Taiwanese National Applied Research Laboratories Announce Collaboration for Microelectronics Innovation: Collaboration Will Facilitate Scientific and Technological Exchanges in Microelectronics, Sharing Platforms and Encouraging PhD Student Exchanges October 23rd, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Possible Futures

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Arrowhead Pharmaceuticals Presents Late-Breaking Preliminary Clinical Data on ARO-HBV at Liver Meeting® 2018 November 9th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Spintronics

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Chip Technology

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Quantum Computing

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Discoveries

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Announcements

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project