Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Missing atoms in a forgotten crystal bring luminescence

The perovskite has a strong green fluorescence.
CREDIT
© 2017 De Bastiani
The perovskite has a strong green fluorescence. CREDIT © 2017 De Bastiani

Abstract:
A little-studied member of the perovskite family of materials could find use in a range of electronic devices, after researchers at KAUST discovered the secret of its strong photoluminescence.

Missing atoms in a forgotten crystal bring luminescence

Thuwal, Saudi Arabia | Posted on October 10th, 2017

Perovskites are a wide group of materials that are known to have remarkable optical and electronic properties. Perovskites with the general formula ABX3, and particularly the perovskite methylammonium lead trihalide, have attracted almost all the research attention thanks to their great promise as low-cost, high-efficiency solar cell materials.

Other members of the perovskite family and perovskite derivatives are also worthy research subjects, says Michele De Bastiani, a postdoctoral researcher in Osman Bakr's group at KAUST.

De Bastiani and his colleagues have been testing Cs4PbBr6, a perovskite of the A4BX6 branch of the family. This material is noted for its strong photoluminescence--the ability to absorb light at one wavelength and re-emit it at another.

The material's potential applications include color-converting coatings on LED light bulbs, lasers and photodetectors. But to be able to fine-tune the material's optoelectric properties for each application, researchers need to solve the mystery of why the perovskite photoluminesces so strongly.

"We investigated the structural and optoelectronic properties of Cs4PbBr6 to understand the origin of its photoluminescence," De Bastiani says. Subjecting the material to a barrage of tests, the team discovered that when a Cs4PbBr6 crystal was heated to 180°C, its photoluminescence was irreversibly destroyed.

Photoluminescence is a two-step process; absorption of light generates a pair of quasi-particles called excitons within the perovskite, which must recombine to re-emit the light. Using temperature-dependent X-ray diffraction to track structural changes to the material as heat was applied, the team discovered that at 180°C, CsPbBr3 nanocrystals form within the mineral.

The heat-induced structural rearrangements that create these nanocrystals also swallow natural defects in the original crystal where bromine atoms were missing, the researchers concluded. These bromine vacancies act as traps for passing exictons. Confined in these traps, the excitons are much more likely to recombine and emit light.

"Now that we have this fundamental understanding, our next step is to move on to potential applications," De Bastiani says. "The unique photoluminescence manifested by Cs4PbBr6 makes these perovskites compelling materials for electroluminescence devices, lasers and light converters."

Meanwhile, many other little-explored members of the perovskite family with interesting properties are waiting to be revealed, De Bastiani adds. "One example is CsPb2Br5, a single crystal we recently synthesized for the first time with unseen optoelectronic properties."

####

For more information, please click here

Contacts:
Carolyn Unck

Copyright © King Abdullah University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Perovskites

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Display technology/LEDs/SS Lighting/OLEDs

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors June 27th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Possible Futures

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Discoveries

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Announcements

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project