Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction

Artist's impression of the role of a quantum observer: depending on where the observer is positioned, and what part of the figure is seen, the water will be seen to flow differently.
CREDIT
©K. Aranburu
Artist's impression of the role of a quantum observer: depending on where the observer is positioned, and what part of the figure is seen, the water will be seen to flow differently. CREDIT ©K. Aranburu

Abstract:
This is the main result obtained by the group led by Professor Ángel Rubio of the UPV/EHU and of the Max Planck Institute PMSD, together with collaborators at the BCCMS centre in Bremen, and which has been echoed by the journal Nature Quantum Materials.

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction

Bizkaia, Spain | Posted on October 6th, 2017

In macroscopic objects such as a current of water, the fact of observing the current does not affect the flow of the water and, in accordance with the laws of classical thermodynamics, this flow would take place from the upper to the lower part of the system. The same thing happens with temperature flows where the current goes from the hotter body to the colder one, or in electrical systems. However, in quantum devices, "the process of observation, the watching, changes the state of the system, and this makes it more likely that the current will be made to flow in one direction or another", explained Ángel Rubio, a UPV/EHU professor, leader of the UPV/EHU's Nano-Bio Spectroscopy Research Group, and Director of the Hamburg-based Max Planck Institute for the Structure and Dynamics of Matter.

As Rubio stressed, this does not constitute "an infringement of any fundamental theorem of physics nor is energy created out of nothing. What happens is that the fact of looking, of inserting an observer into the system, acts as an obstacle, as if you were to close off the channel in a pipeline through which the water is flowing. Obviously, if the load starts to build up, it would end up going in the opposite direction. In other words, the observer projects the state of the system onto a state that transmits the current or energy in opposite directions.

Rubio remembers the surprise when discovering that inserting the quantum observer caused the directions of the current and the transfer of energy to change: "Initially we thought it was an error. We expected to come across changes and we thought it would be possible to halt the transport, but we didn't expect there was going to be a complete change of flow. These changes in the direction of the current can also be made in a controlled way. Depending on where the observer is inserted, the flow can be changed, but there are "specific areas in the device in which despite looking, the direction does not change," he explained.

Difficulties for experimental design

Controlling the heat and current of particles in this way could open up the door to various strategies for designing quantum transport devices with directionality control of the injection of currents for applications in thermoelectrics, spintronics, phononics and detection, among others. But Ángel Rubio believes these applications are a long way off because he sees limitations in the design of the observers: «We have worked from a theoretical perspective in which we have proposed a simple model and the theory can be easily verified because all the energy and entropy flows are preserved. Carrying out this process experimentally would be another matter. Although the type of device that would need to be designed exists, and producing it would be feasible, right now there is no possibility of doing this in a controlled way».

Faced with this situation, the research group is now exploring other, similar ideas, «other mechanisms as an alternative to quantum observers which would allow similar effects to be achieved and which would be more realistic when it comes to implementing them experimentally».

###

Additional information

Researchers from the MPSD (Max Planck Institute for the Structure and Dynamics of Matter) at the CFEL (Center for Free-Electron Laser Science) in Hamburg, together with collaborators from the UPV/EHU and the Bremen Center for Computational Materials Science (BCCMS) have participated in this study, published in the journal Nature PJ Quantum Materials.

####

For more information, please click here

Contacts:
Matxalen Sotillo

34-688-673-770

Copyright © University of the Basque Country

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Bibliographical reference

Related News Press

Quantum Physics

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

News and information

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Physics

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Possible Futures

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Discoveries

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Quantum nanoscience

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project