Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields

This is an image of diamonds with different properties ready to be measured.
CREDIT
Dima Farfurnik
This is an image of diamonds with different properties ready to be measured. CREDIT Dima Farfurnik

Abstract:
Pure diamond consists of carbon atoms in a perfect crystal lattice. But remove a few carbons and swap some others for nitrogen, and you get a diamond with special quantum-sensing properties. These properties are useful for quantum information applications and sensing magnetic fields, and as a platform for probing the mysteries of quantum physics.

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields

Washington, DC | Posted on September 24th, 2017

When a nitrogen atom is next to the space vacated by a carbon atom, it forms what is called a nitrogen-vacancy (NV) center. Now, researchers have shown how they can create more NV centers, which makes sensing magnetic fields easier, using a relatively simple method that can be done in many labs. They describe their results this week in Applied Physics Letters, from AIP Publishing.

Magnetic field sensing presents a prime example for the importance of this sensing. Green light can induce the NV centers to fluoresce and emit red light, but the amount of this fluorescence changes in the presence of a magnetic field. By measuring the brightness of the fluorescence, diamond NV centers can help determine magnetic field strength. Such a device can make magnetic images of a range of sample types, including rocks and biological tissue.

The sensitivity of this type of magnetic detection is determined by the concentration of NV centers while vacancies that are not paired with nitrogen create noise. Efficient conversion of vacancies into NV centers, therefore, as well as maximizing the concentration of NV centers, plays a key role in advancing these detection methods.

Researchers typically purchase nitrogen-doped diamonds from a separate company. They then bombard the diamond with electrons, protons or other particles, which strip away some of the carbon atoms, leaving behind vacancies. Finally, a heating process called annealing nudges the vacancies next to the nitrogen atoms to form the NV centers. The problem is that irradiation often requires sending your sample to a separate facility, which is expensive and time-consuming.

"What is special about our approach is that it's very simple and very straightforward," said Dima Farfurnik of the Hebrew University of Jerusalem in Israel. "You get sufficiently high NV concentrations that are appropriate for many applications with a simple procedure that can be done in-house."

Their method uses high energy electron bombardment in a transmission electron microscope (TEM), an instrument accessible to many researchers, to locally create NV centers. Normally, a TEM is used to image materials down to subnanometer resolutions, but its narrow electron beam can also irradiate diamonds.

Others have shown TEMs can create NV centers in specialized diamond samples, but the researchers in this study successfully tested the method on several commercially available diamond samples.

In a typical, untreated sample, less than 1 percent of the nitrogen atoms form NV centers. But by using a TEM, the researchers increased this conversion efficiency to as high as 10 percent. In certain cases, the samples reached their saturation limit, and more irradiation was no longer effective. For other samples, however, the researchers didn't hit this limit, suggesting that additional irradiation could boost efficiencies further. With higher conversion efficiencies, and small irradiation volumes possible with a TEM, devices like magnetic sensors could be more compact.

To make sure the method didn't hinder the effectiveness of NVs in applications like sensing magnetic fields, the researchers confirmed that the length of time the NV centers remain in their states -- the coherence time -- didn't change.

Packing enough NV centers in a diamond would allow physicists to probe the quantum interactions among the centers themselves. This research could enable the creation of a unique quantum state called a squeezed state, which has never been demonstrated before in a solid and could push the sensing capabilities of these systems beyond today's classical limits.

"We hope the enhanced number of NV centers due to irradiation will serve as a stepping stone for this long-term and ambitious goal," Farfurnik said.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org .

For more information, please click here

Contacts:
Julia Majors

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Enhanced concentrations of nitrogen-vacancy centers in diamond through TEM irradiation," is authored by D. Farfurnik, N. Alfasi, S. Masis, Y. Kauffmann, E. Farchi, Y. Romach, Y. Hovav, E. Buks and N. Bar-Gill. The article appeared in Applied Physics Letters Sept. 19, 2017 [DOI: 10.1063/1.4993257] and can be accessed at:

Related News Press

News and information

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Magnetism

Graphene controls surface magnetism at room temperature October 8th, 2018

The nanoscience of ferroelectric and ferromagnetic domains converges on Barcelona September 27th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Quantum Physics

Searching for errors in the quantum world September 21st, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Possible Futures

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Iranian Firm Offering Nano-Products on Chinese Market October 16th, 2018

Sensors

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Announcements

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Arrowhead Pharmaceuticals Hosts R&D Day on Pipeline of RNAi Therapeutics October 17th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Quantum nanoscience

Quantum mechanics work lets oil industry know promise of recovery experiments September 28th, 2018

September 5th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project