Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum twisted Loong confirms the physical reality of wavefunctions

The cartoon of 'Quantum Twisted Loong' (Cover).
CREDIT
Science China Press
The cartoon of 'Quantum Twisted Loong' (Cover). CREDIT Science China Press

Abstract:
Quantum mechanics, as a pillar of modern civilization, has benefited human society for a century, in which wavefunctions played a crucial role. In the past 100 years, what most people did was 'Shut up and calculate', and wavefunctions always gave us a correct probability list of measurement outcomes. However, the debate on the following deeper philosophical issue behind it still persists: whether wavefunctions describe the reality of quantum entities' existence and dynamic trajectory. In various delayed-choice experiments that are dedicated to this issue, Copenhagen interpretation denied the reality of wavefunctions for avoiding the paradox of a choice made in the present to alter a photon's past behavior. However, the determinists argued that the past of photons should be realistic and deterministic prior to the detection, as Einstein's famous question states: Do you really believe the moon exists only when you look at it?

Quantum twisted Loong confirms the physical reality of wavefunctions

Beijing, China | Posted on September 23rd, 2017

Recently, to address this long-standing issue, Profs. Bao-Sen Shi's research group from the University of Science and Technology of China collaborated with Prof. Zhi-Han Zhu from Harbin University of Science and Technology and other collaborators to propose and demonstrate a quantum twisted double-slit experiment, in which photonics orbital angular momentum (OAM) and its group velocity slowing-down feature are employed to extract photons' propagation history after detections. Specifically, first, the state (wavefunction) of signal photons diffracted from the twisted double slits is transformed into a superposition state between different OAM modes and Gaussian mode; second, the photons are observed only in Gaussian mode (selecting particle behavior); and then, a Hong-Ou-Mandel (HOM) interference between signal and reference photons provides the arrival times of signal photons that allow one to investigate photons' propagation history.

The results obtained from the experiment tell us that the nature of the photon prior to the measurement is pre-existing, just as described by the wavefunction. Thus, the physical reality and nonlocality of wavefunctions are confirmed. This finding clarifies the long-held misunderstanding of the role of wavefunctions and their collapses in the evolution of quantum entities. In addition, they present a cartoon titled "Quantum Twisted Loong", which is shown in the Cover and Fig. 5 in the article, as shown in Fig. 1, to illustrate the propagation behavior of photons in a double-slit apparatus. Unlike the cartoon titled "Great Smoky Dragon" created by Miller and Wheeler in 1983, as shown in Fig.2, where the body of the dragon is unknown and smoky, the body of Loong is deterministic, i.e., the two bodies coexist simultaneously (representing wave nature) before their collapse.

###

This work is supported by the National Natural Science Funds for Distinguished Young Scholar of China (Grant No. 61525504); the National Natural Science Foundation of China (Grant Nos. 11574065, 11604322, 61275115, 61378003, 61435011, 61605194); China Postdoctoral Science Foundation (Grant No. 2016M590570); the Fundamental Research Funds for the Central Universities No. 11604322), and the Key Programs of the Natural Science Foundation of Heilongjiang Province of China (Grant No. ZD201415).

####

For more information, please click here

Contacts:
B.-S. Shi

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Zhi-Yuan Zhou, Zhi-Han Zhu, Shi-Long Liu, Yin-Hai Li, Shuai Shi, Dong-Shenging, Li-Xiang Chen, Wei Gao, Guang-Can Guo, Bao-Sen Shi. Quantum twisted double-slits experiments: confirming wavefunctions' physical reality, Science Bulletin 62 (2017) 1185-1192:

Related News Press

News and information

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Quantum Physics

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Discoveries

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Announcements

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Photonics/Optics/Lasers

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project