Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fast magnetic writing of data

In 1956, IBM introduced the first magnetic hard disc, the RAMAC. ETH researchers have now tested a novel magnetic writing technology that could soon be used in the main memories of modern computers. (Photograph: IBM)
In 1956, IBM introduced the first magnetic hard disc, the RAMAC. ETH researchers have now tested a novel magnetic writing technology that could soon be used in the main memories of modern computers. (Photograph: IBM)

Abstract:
For almost seventy years now, magnetic tapes and hard disks have been used for data storage in computers. In spite of many new technologies that have been developed in the meantime, the controlled magnetization of a data storage medium remains the first choice for archiving information because of its longevity and low price. As a means of realizing random access memories (RAMs), however, which are used as the main memory for processing data in computers, magnetic storage technologies were long considered inadequate. That is mainly due to its low writing speed and relatively high energy consumption.

Fast magnetic writing of data

Zurich, Switzerland | Posted on September 7th, 2017

Pietro Gambardella, Professor at the Department of Materials of the ETH Zurich, and his colleagues, together with colleagues at the Physics Department and at the Paul Scherrer Institute (PSI), have now shown that using a novel technique, magnetic storage can still be achieved very fast and without wasting energy.

Magnetization inversion without coils

In traditional magnetic data storage technologies, tape or disk data carriers coated with a cobalt alloy are used. A current-carrying coil produces a magnetic field that changes the direction of magnetization in a small portion of the data carrier. Compared to the speeds of modern processors, this procedure is very slow, and the electric resistance of the coils leads to energy loss. It would, therefore, be much better if one could change the magnetization direction directly, without taking a detour via magnetic coils.

In 2011, Gambardella and his colleagues already demonstrated a technique that could do just that: An electric current passing through a specially coated semiconductor film inverted the magnetization in a tiny metal dot. This is made possible by a physical effect called spin-orbit-torque. In this effect, a current flowing in a conductor leads to an accumulation of electrons with opposite magnetic moment (spins) at the edges of the conductor. The electron spins, in turn, create a magnetic field that causes the atoms in a nearby magnetic material to change the orientation of their magnetic moments. In a new study the scientists have now investigated how this process works in detail and how fast it is. The results were recently published in the scientific journal Nature Nanotechnology.

Spatial resolution with X-rays

In their experiment, the researchers inverted the magnetization of a cobalt dot having a diameter of just 500 nanometres using electric current pulses that flowed through an adjacent platinum wire. During this process, they exposed the cobalt dot to strongly focused X-rays that were created at the Swiss Light Source of PSI. The X-rays scanned the dot successively with a spatial resolution of 25 nanometres. How strongly the dot absorbed the X-rays at a particular point depended on the local magnetization direction.

«In this way we obtained a two-dimensional image of the magnetization inside the cobalt dot and could watch as the current pulse gradually changed it», explains Manuel Baumgartner, lead author of the study and doctoral student in Gambardella's research group.

The researchers were thus able to observe that the magnetization inversion happened in less than one nanosecond - considerably faster than in other recently studied techniques. «Moreover, we can now predict on the basis of the experimental parameters when and where the magnetization inversion begins and where it ends», Gambardella adds. In other techniques the inversion is also driven by an electric current, but it is triggered by thermal fluctuations in the material, which causes large variations in the timing of the inversion.

Possible application in RAMs

The researchers sent up to a trillion inversion pulses through the cobalt dot at a frequency of 20 MHz without observing any reduction in the quality of the magnetization inversion. «This gives us the hope that our technology should be suitable for applications in magnetic RAMs», says Gambardella's former postdoc Kevin Garello, also a lead author of the study. Garello now works at the IMEC research centre in Leuven, Belgium, investigating the commercial realization of the technique.

In a first step, the researchers would now like to optimize their materials in order to make the inversion work even faster and at smaller currents. One additional possibility is to improve the shape of the cobalt dots. For now, those are circular, but other shapes such as ellipses or diamonds could make the magnetization inversion even more efficient, the researchers say. Magnetic RAMs could, among other things, make the loading of the operating system when booting a computer obsolete - the relevant programmes would remain in the working memory even when the power is switched off.

####

For more information, please click here

Contacts:
Pietro Gambardella

41-446-330-756

Copyright © ETH Zurich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Magnetism/Magnons

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Memory Technology

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project