Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more

Sandip Ghosal
Sandip Ghosal

Abstract:
Research presented in a new paper co-authored by Northwestern University associate professor of mechanical engineering Sandip Ghosal sheds new light on how polymers cross tiny pores ten thousand times smaller than a human hair.

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more

Evanston, IL | Posted on September 5th, 2017

These findings could propel a deeper understanding of the biophysics of living cells, the measurement of polymer properties in diverse chemical industries such as plastics manufacturing and food processing, and the design of biosensors.

In the paper published Aug. 30 in Nature Communications, Ghosal and his co-authors present data showing how the speed of DNA changes as it enters or exits a nanopore. Surprisingly, the experiment showed that DNA molecules move faster as they enter a nanopore (forward translocation) and slower when they exit (backward translocation).

What's happening with the DNA, Ghosal explains, is something familiar to mechanical engineers: a concept called "buckling," studied by great scientific minds like Leonhard Euler and Daniel Bernoulli more than two centuries ago, but rarely studied at the molecular level.

Ghosal and his collaborators concluded that DNA molecules buckle under the influence of compressive forces when entering the nanopore, but are pulled straight by tensile forces when moving in the opposite direction. The resulting difference in the geometric configuration results in greater hydrodynamic drag on the molecule in the latter case.

The study was motivated by a desire to understand, in detail, the mechanics of a DNA molecule's passage through a nanopore, a subject of rich scientific curiosity and conjecture.

"We wanted to know what is happening to the DNA and why," says Ghosal, who also holds a courtesy appointment in the Department of Engineering Sciences and Applied Mathematics.

Rather than simply determining the DNA's average speed of translocation, Ghosal's U.K.-based collaborators - Ulrich F. Keyser, Maria Ricci, Kaikai Chen from the University of Cambridge, and Nicholas A.W. Bell, now of the University of Oxford -designed an innovative experiment to reveal the actual variation of the DNA's speed by inserting markers along the DNA molecule. This "DNA ruler" allowed the researchers to measure the speed of translocation at each instant. To then collect large amounts of data within a relatively short time period, the researchers repeatedly flipped the voltage across the pore, sending the DNA in and out of the nanopore in a "ping-pong" mode.

The group's work builds on the "resistive pulse" technique introduced nearly 20 years ago for detecting and characterizing single molecules. That idea has since been applied to a variety of research, including the search for an ultra-fast method of DNA sequencing and the effort to rapidly measure the mechanical properties of cells.

Ghosal describes his team's work as a potential "first step in extending the resistive pulse method to determining the mechanical characteristics of polymers."

Though Ghosal admits the work itself is purely curiosity-driven research designed to probe what more can be done with the resistive pulse technique, the findings could nevertheless have real-world applications in any area where the measurement of polymer properties is important.

"Each polymer has a characteristic load at which it will buckle and, therefore, the difference between the forward and backward translocation times provide a way of gauging the bending rigidity of polymers," Ghosal said. "It is incredibly exciting that we can now observe this," Ghosal says.

####

For more information, please click here

Contacts:
Emily Ayshford

847-467-1194

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

News and information

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Possible Futures

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Nanomedicine

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Sensors

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Discoveries

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Announcements

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Food/Agriculture/Supplements

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Changing the grocery game: Manufacturing process provides low-cost, sustainable option for food packaging June 26th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Nanobiotechnology

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project