Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics

Abstract:
The American Institute for Manufacturing Integrated Photonics (AIM Photonics), a public-private partnership advancing the nation’s photonics manufacturing capabilities, today announced the winner of a proposal call for a new Defense Department Government Directed Project for photonic integrated circuit (PIC) data links for cryogenic focal plane arrays (FPAs).

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics

Albany, NY | Posted on August 10th, 2017

The $1,200,000 U.S. Department of Defense (DoD) project, along with an additional $400,000 in matching funds from a team led by the University of Arizona (UA), will support a consortium that includes Sandia National Labs, Raytheon (RTN) and other aerospace firms engaged in FPA technology.

The project will encompass the design, fabrication and test of cryogenic PIC-based datalinks for FPA readout and has the potential to strongly advance imaging capabilities for national defense applications. Capitalizing on the national reach and capabilities of this unique consortium, the PICs at the heart of the project will be manufactured in the AIM Photonics silicon photonics fabrication facility at SUNY Polytechnic Institute in Albany, New York, and could also lead to fabrication opportunities at AIM Photonics’ Test, Assembly, and Packaging (TAP) facility, which is being built in in Rochester, New York.

“When you consider the rapid pace of growth in both the FPA size and the required data rates, conventional electronic readouts become limited because they are both a heat source and a communication bottleneck,” says Dr. Robert Norwood, a Professor of Optical Sciences at the University of Arizona, and Principal Investigator for the Program.

UA’s extensive experience in cryogenic FPAs and integrated photonics, working in concert with major contractors of the defense industrial base, will target a design and development methodology that provides a common PIC datalink solution across multiple system needs and environments.

“We are proud to partner with the DoD, the University of Arizona, and our industrial members in the development of this critical technology,” said Michael Liehr, Ph.D., CEO of AIM Photonics. “The design and development infrastructure we have developed is state-of-the-art, and a key benefit for the team as they create this next integrated photonics technology.”

Dr. Frank Jaworski, Program Manager, Emerging Technology, Raytheon Vision Systems, added, "Raytheon regards the integration of photonic integrated circuits with focal plane arrays as a critical path for the development of future DoD imaging systems vital to the nation’s security. We look forward to the University of Arizona’s leadership of the consortium and utilizing their expertise in developing this key technology."

Neil Supola, Chief of the Infrared Focal Plane Array Branch at the Army’s Night Vision and Electronic Sensors Directorate, and Government Program Manager for AIM Photonics, noted that, “This program is a great opportunity for the Department of Defense to leverage advances in integrated photonics manufacturing being realized by the Manufacturing USA program together with its state, industrial, and academic partners. The scope of industrial participation on this project highlights the relevance photonic integration has within the DoD community, and this project’s inherent potential to make a large impact.”

####

About AIM Photonics
AIM Photonics is one of a number of Manufacturing Innovation Institutes, an industry-driven public-private partnership that focuses the nation’s premiere capabilities and expertise to capture critical global manufacturing leadership in a technology that is both essential to national security and positioned to provide a compelling return-on-investment to the U.S. economy.

About University of Arizona
Established in 1885, the University of Arizona, the state's super land-grant university with two medical schools, produces graduates who are real-world ready through its 100% Engagement initiative. Recognized as a global leader, the UA is also a leader in research, bringing more than $606 million in research investment each year, and ranking 21st among all public universities. The UA is advancing the frontiers of interdisciplinary scholarship and entrepreneurial partnerships and is a member of the Association of American Universities, the 62 leading public and private research universities.

For more information, please click here

Contacts:
Steve Ference (AIM)

(518) 956-7319

Copyright © AIM Photonics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Possible Futures

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Academic/Education

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Optical computing/Photonic computing

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Photonic integrated erbium doped amplifiers reach commercial performance: Boosting light power revolutionizes communications and autopilots June 17th, 2022

Electron-phonon coupling assisted universal red luminescence of o-phenylenediamine-based CDs June 10th, 2022

Announcements

New technology helps reveal inner workings of human genome June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Military

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

Nanostructured fibers can impersonate human muscles June 3rd, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Photonics/Optics/Lasers

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics? June 24th, 2022

Photonic integrated erbium doped amplifiers reach commercial performance: Boosting light power revolutionizes communications and autopilots June 17th, 2022

Marching to the Cadence of Electronics: Innovation A new paper in Nature validates technology developed by John Bowers and collaborators June 10th, 2022

Alliances/Trade associations/Partnerships/Distributorships

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

CEA and Startup C12 Join Forces to Develop Next-Generation Quantum Computers with Multi-Qubit Chips at Wafer Scale March 25th, 2022

Research partnerships

New technology helps reveal inner workings of human genome June 24th, 2022

Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project