Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project

J. Adam Fenster and Prof. A. N. Vamivakas, University of Rochester

It’s no trick of the eye; it’s an optical trap. Levitated optomechanics can make a nanoparticle float in space. A finely focused laser beam forms an “optical tweezer” and creates a tiny, isolated laboratory for the study of delicate quantum states. RIT scientist Mishkat Bhattacharya tests his theoretical predictions on such experimental platforms used by his collaborator Nick Vamivakas at the University of Rochester’s Institute of Optics.
J. Adam Fenster and Prof. A. N. Vamivakas, University of Rochester It’s no trick of the eye; it’s an optical trap. Levitated optomechanics can make a nanoparticle float in space. A finely focused laser beam forms an “optical tweezer” and creates a tiny, isolated laboratory for the study of delicate quantum states. RIT scientist Mishkat Bhattacharya tests his theoretical predictions on such experimental platforms used by his collaborator Nick Vamivakas at the University of Rochester’s Institute of Optics.

Abstract:
Research underway at RIT advances a new kind of sensing technology that captures data with better precision than currently possible and promises cheaper, smaller and lighter sensor designs.

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project

Rochester, NY | Posted on August 10th, 2017

Mishkat Bhattacharya, a theoretical physicist at RIT, is investigating new precision quantum sensing solutions for the U.S. Department of the Navy’s Office of Naval Research. The three-year study is supported by $550,000 grant and is a continuation of a previous award. Bhattacharya will test interactions between light and matter at the nanoscale and analyze measurements of weak electromagnetic fields and gravitational forces.

Specialized microscopes measure theoretical predictions that describe matter at the nanoscale in which a nanometer equals one-billionth of a meter and a human hair measures between 80,000-100,000 nanometers, according to the U.S. National Nanotechnology Initiative.

Bhattacharya works in the emerging field of levitated optomechanics, an area of physics that investigates nanoparticles by trapping them in a laser beam. Laser trapping—a method known as “optical tweezers”—tests the limits of quantum effects in isolation and eliminates physical disturbances from the surrounding environment

Using the techniques of laser trapping, Bhattacharya takes quantum mechanics to the next level by probing quantum effects in the nanoparticles, which contain billions of atoms. He investigates where quantum mechanics (which governs the microscopic) butts up against classical physics (which explains the macroscopic) and explores light-matter interaction in macroscopic quantum physics.

“Levitated optomechanical systems provide a clean platform for studying quantum optics, information science, and precision measurement and sensing,” said Bhattacharya, an associate professor in RIT’s School of Physics and Astronomy and a member of the Future Photon Initiative.

To explore different nanosystems for the Office of Naval Research, Bhattacharya isolates a nanodiamond in a pocket of light. Suspension in laser light turns the particle into a floating probe. Bhattacharya is interested in the signatures carried in the light and the information it reveals about the electromagnetic fields and the gravitational forces surrounding the nanoparticle.

He collaborates with postdoctoral associate Pardeep Kumar and RIT undergraduate physics major Wyatt Wetzel. This summer, a visiting undergraduate from Massachusetts Institute of Technology, Peter Mizes, joined his Atomic, Molecular and Optical Physics Theory Group. Bhattacharya tests his theoretical predictions in a lab run by his collaborator Nick Vamivakas, an experimental physicist at the University of Rochester’s Institute of Optics.

His first study for the Office of Naval Research determined the smallest force that could be detected with a diamond crystal that levitated without spinning. The new project investigates the outcomes of three nanosystems, each using nanoparticles optically trapped under different conditions:

· A particle containing an impurity which acts as a spin sensitive to magnetic fields or as an excess charge sensitive to electric fields;
· A particle moving like a pendulum in three dimensions;
· A particle larger than the wavelength of light entrapping it.

Quantum mechanics is a door to a world on the nanoscale and is governed by a different set of physical laws.

“Unique rules apply in quantum physics,” Bhattacharya said. “It is not the day-to-day physical universe familiar to our experience.”

Optomechanics explores interactions between light and tiny particles of matter within the nano-realm. Sensing technology advanced at these submicroscopic scale promises finer measurements of physical properties that describe the world, such as electric and magnetic fields, temperature, force, velocity, acceleration, gravitation.

According to Bhattacharya, quantum sensors might someday detect gravitational waves, find dark matter, perfect quantum computing and create precise accelerometers—the technology that rights display screens held at any angle.

####

For more information, please click here

Contacts:
Susan Gawlowicz
Rochester Institute of Technology
University News Services

@SGawlowicz
585-475-5061

Copyright © Rochester Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Physics

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

Govt.-Legislation/Regulation/Funding/Policy

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Possible Futures

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Quantum Computing

Discovery of zero-energy bound states at both ends of a one-dimensional atomic line defect March 18th, 2020

A filter for cleaner qubits March 6th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

ORNL researchers advance performance benchmark for quantum computers January 3rd, 2020

Sensors

A new way to fine-tune exotic materials: Thin, stretch and clamp: Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties April 2nd, 2020

Carbon nanotubes forecast when vegetables spoil and buds bloom April 2nd, 2020

On-chip single-mode CdS nanowire laser March 21st, 2020

Tokai scientists create the world's first electronic skin-based sensor for heatstroke detection March 17th, 2020

Discoveries

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Announcements

A step ahead in the race toward ultrafast imaging of single particles April 9th, 2020

House cleaning on the nanoscale: FAU scientists develop method for cleaning surfaces at the nanoscale April 8th, 2020

A twist connecting magnetism and electronic-band topology: Combined optical and torque measurements establish the microscopic mechanism linking magnetism and electronic-band topology in a Dirac material April 7th, 2020

New measurements reveal evidence of elusive particles in a newly-discovered superconductor: Material may be natural home to quasiparticle hiding for decades April 3rd, 2020

Military

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020

Photonics/Optics/Lasers

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

Light in the tunnel March 26th, 2020

Heterostructure and Q-factor engineering for low-threshold and persistent nanowire lasing March 22nd, 2020

On-chip single-mode CdS nanowire laser March 21st, 2020

Research partnerships

A combined optical transmitter and receiver: Bidirectional optical signal transmission between two identical devices using perovskite diodes April 3rd, 2020

3D reconstructions of individual nanoparticles: Liquid phase electron microscopy illuminates 3D atomic structures of platinum nanoparticles, advancing full control of nanoengineering April 3rd, 2020

Carbon nanotubes forecast when vegetables spoil and buds bloom April 2nd, 2020

A pigment from ancient Egypt to modern microscopy: Göttingen research team produces new nanosheets for near infrared imaging March 23rd, 2020

Quantum nanoscience

Quantum phenomenon governs organic solar cells: Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes March 30th, 2020

Light in the tunnel March 26th, 2020

Ultrafast probing reveals intricate dynamics of quantum coherence: Ultrafast, multidimensional spectroscopy unlocks macroscopic-scale effects of quantum electronic correlations March 2nd, 2020

Oxford Instruments announces release of new dilution refrigerator - Proteox: Opening the door for a new direction in dilution refrigerator development February 28th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project