Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project

J. Adam Fenster and Prof. A. N. Vamivakas, University of Rochester

It’s no trick of the eye; it’s an optical trap. Levitated optomechanics can make a nanoparticle float in space. A finely focused laser beam forms an “optical tweezer” and creates a tiny, isolated laboratory for the study of delicate quantum states. RIT scientist Mishkat Bhattacharya tests his theoretical predictions on such experimental platforms used by his collaborator Nick Vamivakas at the University of Rochester’s Institute of Optics.
J. Adam Fenster and Prof. A. N. Vamivakas, University of Rochester It’s no trick of the eye; it’s an optical trap. Levitated optomechanics can make a nanoparticle float in space. A finely focused laser beam forms an “optical tweezer” and creates a tiny, isolated laboratory for the study of delicate quantum states. RIT scientist Mishkat Bhattacharya tests his theoretical predictions on such experimental platforms used by his collaborator Nick Vamivakas at the University of Rochester’s Institute of Optics.

Abstract:
Research underway at RIT advances a new kind of sensing technology that captures data with better precision than currently possible and promises cheaper, smaller and lighter sensor designs.

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project

Rochester, NY | Posted on August 10th, 2017

Mishkat Bhattacharya, a theoretical physicist at RIT, is investigating new precision quantum sensing solutions for the U.S. Department of the Navy’s Office of Naval Research. The three-year study is supported by $550,000 grant and is a continuation of a previous award. Bhattacharya will test interactions between light and matter at the nanoscale and analyze measurements of weak electromagnetic fields and gravitational forces.

Specialized microscopes measure theoretical predictions that describe matter at the nanoscale in which a nanometer equals one-billionth of a meter and a human hair measures between 80,000-100,000 nanometers, according to the U.S. National Nanotechnology Initiative.

Bhattacharya works in the emerging field of levitated optomechanics, an area of physics that investigates nanoparticles by trapping them in a laser beam. Laser trapping—a method known as “optical tweezers”—tests the limits of quantum effects in isolation and eliminates physical disturbances from the surrounding environment

Using the techniques of laser trapping, Bhattacharya takes quantum mechanics to the next level by probing quantum effects in the nanoparticles, which contain billions of atoms. He investigates where quantum mechanics (which governs the microscopic) butts up against classical physics (which explains the macroscopic) and explores light-matter interaction in macroscopic quantum physics.

“Levitated optomechanical systems provide a clean platform for studying quantum optics, information science, and precision measurement and sensing,” said Bhattacharya, an associate professor in RIT’s School of Physics and Astronomy and a member of the Future Photon Initiative.

To explore different nanosystems for the Office of Naval Research, Bhattacharya isolates a nanodiamond in a pocket of light. Suspension in laser light turns the particle into a floating probe. Bhattacharya is interested in the signatures carried in the light and the information it reveals about the electromagnetic fields and the gravitational forces surrounding the nanoparticle.

He collaborates with postdoctoral associate Pardeep Kumar and RIT undergraduate physics major Wyatt Wetzel. This summer, a visiting undergraduate from Massachusetts Institute of Technology, Peter Mizes, joined his Atomic, Molecular and Optical Physics Theory Group. Bhattacharya tests his theoretical predictions in a lab run by his collaborator Nick Vamivakas, an experimental physicist at the University of Rochester’s Institute of Optics.

His first study for the Office of Naval Research determined the smallest force that could be detected with a diamond crystal that levitated without spinning. The new project investigates the outcomes of three nanosystems, each using nanoparticles optically trapped under different conditions:

· A particle containing an impurity which acts as a spin sensitive to magnetic fields or as an excess charge sensitive to electric fields;
· A particle moving like a pendulum in three dimensions;
· A particle larger than the wavelength of light entrapping it.

Quantum mechanics is a door to a world on the nanoscale and is governed by a different set of physical laws.

“Unique rules apply in quantum physics,” Bhattacharya said. “It is not the day-to-day physical universe familiar to our experience.”

Optomechanics explores interactions between light and tiny particles of matter within the nano-realm. Sensing technology advanced at these submicroscopic scale promises finer measurements of physical properties that describe the world, such as electric and magnetic fields, temperature, force, velocity, acceleration, gravitation.

According to Bhattacharya, quantum sensors might someday detect gravitational waves, find dark matter, perfect quantum computing and create precise accelerometers—the technology that rights display screens held at any angle.

####

For more information, please click here

Contacts:
Susan Gawlowicz
Rochester Institute of Technology
University News Services

@SGawlowicz
585-475-5061

Copyright © Rochester Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light-controlled nanomachine controls catalysis: A molecular motor enables the speed of chemical processes to be controlled using light impulses November 23rd, 2020

Arrowhead Pharmaceuticals Reports Fiscal 2020 Year End Results November 23rd, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020

Physics

A new candidate material for quantum spin liquids November 12th, 2020

A new spin on atoms gives scientists a closer look at quantum weirdness October 30th, 2020

Time crystals lead researchers to future computational work October 23rd, 2020

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Govt.-Legislation/Regulation/Funding/Policy

NIST sensor experts invent supercool mini thermometer November 17th, 2020

Arrowhead Interim Clinical Data Demonstrate ARO-AAT Treatment Improved Multiple Biomarkers of Alpha-1 Liver Disease November 13th, 2020

Making 3-D Nanosuperconductors with DNA: Complex 3-D nanoscale architectures based on DNA self-assembly can conduct electricity without resistance and may provide a platform for fabricating quantum computing and sensing devices November 10th, 2020

Face mask aims to deactivate virus to protect others: Antiviral layer attacks respiratory droplets to make mask wearer less infectious October 30th, 2020

Possible Futures

Light-controlled nanomachine controls catalysis: A molecular motor enables the speed of chemical processes to be controlled using light impulses November 23rd, 2020

Staying ahead of the curve with 3D curved graphene November 20th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020

Quantum Computing

Spintronics advances -- Controlling magnetization direction of magnetite at room temperature: Scientists develop an energy-efficient strategy to reversibly change 'spin orientation' or magnetization direction in magnetite at room temperature November 20th, 2020

NIST sensor experts invent supercool mini thermometer November 17th, 2020

CCNY & partners in quantum algorithm breakthrough November 13th, 2020

A new candidate material for quantum spin liquids November 12th, 2020

Sensors

Making 3-D Nanosuperconductors with DNA: Complex 3-D nanoscale architectures based on DNA self-assembly can conduct electricity without resistance and may provide a platform for fabricating quantum computing and sensing devices November 10th, 2020

Octopus-inspired sucker transfers thin, delicate tissue grafts and biosensors October 16th, 2020

The most sensitive and fastest graphene microwave bolometer September 30th, 2020

An improved wearable, stretchable gas sensor using nanocomposites August 28th, 2020

Discoveries

Light-controlled nanomachine controls catalysis: A molecular motor enables the speed of chemical processes to be controlled using light impulses November 23rd, 2020

New type of ultrahigh piezoelectricity in hydrogen-bonded ferroelectrics November 20th, 2020

Staying ahead of the curve with 3D curved graphene November 20th, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Announcements

Light-controlled nanomachine controls catalysis: A molecular motor enables the speed of chemical processes to be controlled using light impulses November 23rd, 2020

Arrowhead Pharmaceuticals Reports Fiscal 2020 Year End Results November 23rd, 2020

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

Nanosoft releases nanoCAD Plus 20 as a major update November 20th, 2020

Military

CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries : Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Comp October 30th, 2020

Flash graphene rocks strategy for plastic waste: Rice University lab detours potential environmental hazard into useful material October 30th, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Landmark discovery could improve Army lasers, precision sensors September 29th, 2020

Photonics/Optics/Lasers

Order in the disorder: density fluctuations in amorphous silicon discovered October 30th, 2020

CEA-Leti to Build Quantum-Photonics Platform to Ensure Ultra-Secure Data for Finance, Energy, Defense and Other Industries : Project Will Build Demonstrators for Transmitting and Receiving Qubits and Focus on Integrating the Technology in a Unique Platform to Address Quantum Comp October 30th, 2020

Revealing the reason behind jet formation at the tip of laser optical fiber October 16th, 2020

Surface waves can help nanostructured devices keep their cool October 12th, 2020

Research partnerships

Industrial-strength brine, meet your kryptonite: Boron nitride coating is key ingredient in hypersaline desalination technology November 6th, 2020

Rice finds path to nanodiamond from graphene: A spot of pressure enables chemical conversion to hardened 2D material October 29th, 2020

Cicada-inspired waterproof surfaces closer to reality, researchers report October 23rd, 2020

Deca Partners with ADTEC Engineering to Enhance Adaptive Patterning™ for 2µm Chiplet Scaling October 20th, 2020

Quantum nanoscience

Improving quantum dot interactions, one layer at a time: Scientists have found a way to control an interaction between quantum dots that could lead to more efficient solar cells November 20th, 2020

NIST sensor experts invent supercool mini thermometer November 17th, 2020

CCNY & partners in quantum algorithm breakthrough November 13th, 2020

Smaller than Ever—Exploring the Unusual Properties of Quantum-sized Materials November 13th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project