Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye

Schematic diagram of hybrid systems created from a dye and either graphene (top) or carbon nanotubes (bottom). In the basic state, there is a change to the electronic properties of the carbon structures; following stimulation (here represented by light from the sun) an electron is transferred from the dye to the carbon nanostructures (Image: FAU/Alexandra Roth).
Schematic diagram of hybrid systems created from a dye and either graphene (top) or carbon nanotubes (bottom). In the basic state, there is a change to the electronic properties of the carbon structures; following stimulation (here represented by light from the sun) an electron is transferred from the dye to the carbon nanostructures (Image: FAU/Alexandra Roth).

Abstract:
Researchers around the world are looking at how they can manipulate the properties of carbon nanostructures to customise them for specific purposes; the idea is to make the promising mini-format materials commercially viable. A team at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now managed to selectively influence the properties of hybrid systems consisting of carbon nanostructures and a dye.

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye

Nuremberg, Germany | Posted on August 8th, 2017

Carbon nanostructures offer a lot of potential. Both two-dimensional graphene and one-dimensional carbon nanotubes have unique properties that make them interesting when it comes to possible industrial applications. Carbon nanostructures could be used in new kinds of solar power systems in combination with a dye that absorbs light at wavelengths in the near infra-red range, for instance. Thus, unlike conventional solar power generators, these new systems would utilise not only radiation with wavelengths in the visible range but also in the near infra-red region. This is, however, only one of a number of potential areas of application -- the nanostructures could also be used in sensor technology, in electrodes for touch screens and in field-effect transistors.

But scientists first need to understand the mechanisms occurring within the hybrid systems consisting of carbon nanostructures and a dye before they can generate them in a form in which they can be employed in actual applications. A research team at FAU's Chair of Physical Chemistry I is now a step closer towards achieving this goal.

Alexandra Roth and Christoph Schierl of the team headed by Professor Guldi created hybrid systems consisting of graphene and a dye and carbon nanotubes and a dye in the laboratory -- namely in the liquid phase, a technique that keeps costs low and ensures the materials are easier to handle. Of particular advantage to their research was the fact that they managed to generate and analyse both hybrid systems at the same time. This approach made it possible to assess and evaluate the data for both systems and thus compare them.

Changes in the photovoltaic properties indicated that the materials had indeed formed hybrid systems. The researchers were able to demonstrate that, by means of interactions in the basic state, the dye had a specific effect on the electronic properties of the carbon nanostructures. This successful manipulation of the properties of hybrid systems has brought the researchers a step closer towards gaining the ability to effectively employ these carbon nanostructures in real applications.

Additionally, they also found that when light was used to stimulate the systems, each dye molecule transferred an electron to the carbon structures that was then transferred back to the dye after a few nanoseconds -- an essential requirement if the systems are to be employed in dye-sensitised solar cells.

####

For more information, please click here

Contacts:
Press Office at FAU

49-913-185-70229

Copyright © UNIVERSITY OF ERLANGEN-NUREMBERG

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

2 Dimensional Materials

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Graphene forged into three-dimensional shapes September 26th, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Graphene/ Graphite

Graphene forged into three-dimensional shapes September 26th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Possible Futures

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Discoveries

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Materials/Metamaterials

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project