Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye

Schematic diagram of hybrid systems created from a dye and either graphene (top) or carbon nanotubes (bottom). In the basic state, there is a change to the electronic properties of the carbon structures; following stimulation (here represented by light from the sun) an electron is transferred from the dye to the carbon nanostructures (Image: FAU/Alexandra Roth).
Schematic diagram of hybrid systems created from a dye and either graphene (top) or carbon nanotubes (bottom). In the basic state, there is a change to the electronic properties of the carbon structures; following stimulation (here represented by light from the sun) an electron is transferred from the dye to the carbon nanostructures (Image: FAU/Alexandra Roth).

Abstract:
Researchers around the world are looking at how they can manipulate the properties of carbon nanostructures to customise them for specific purposes; the idea is to make the promising mini-format materials commercially viable. A team at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) has now managed to selectively influence the properties of hybrid systems consisting of carbon nanostructures and a dye.

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye

Nuremberg, Germany | Posted on August 8th, 2017

Carbon nanostructures offer a lot of potential. Both two-dimensional graphene and one-dimensional carbon nanotubes have unique properties that make them interesting when it comes to possible industrial applications. Carbon nanostructures could be used in new kinds of solar power systems in combination with a dye that absorbs light at wavelengths in the near infra-red range, for instance. Thus, unlike conventional solar power generators, these new systems would utilise not only radiation with wavelengths in the visible range but also in the near infra-red region. This is, however, only one of a number of potential areas of application -- the nanostructures could also be used in sensor technology, in electrodes for touch screens and in field-effect transistors.

But scientists first need to understand the mechanisms occurring within the hybrid systems consisting of carbon nanostructures and a dye before they can generate them in a form in which they can be employed in actual applications. A research team at FAU's Chair of Physical Chemistry I is now a step closer towards achieving this goal.

Alexandra Roth and Christoph Schierl of the team headed by Professor Guldi created hybrid systems consisting of graphene and a dye and carbon nanotubes and a dye in the laboratory -- namely in the liquid phase, a technique that keeps costs low and ensures the materials are easier to handle. Of particular advantage to their research was the fact that they managed to generate and analyse both hybrid systems at the same time. This approach made it possible to assess and evaluate the data for both systems and thus compare them.

Changes in the photovoltaic properties indicated that the materials had indeed formed hybrid systems. The researchers were able to demonstrate that, by means of interactions in the basic state, the dye had a specific effect on the electronic properties of the carbon nanostructures. This successful manipulation of the properties of hybrid systems has brought the researchers a step closer towards gaining the ability to effectively employ these carbon nanostructures in real applications.

Additionally, they also found that when light was used to stimulate the systems, each dye molecule transferred an electron to the carbon structures that was then transferred back to the dye after a few nanoseconds -- an essential requirement if the systems are to be employed in dye-sensitised solar cells.

####

For more information, please click here

Contacts:
Press Office at FAU

49-913-185-70229

Copyright © UNIVERSITY OF ERLANGEN-NUREMBERG

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

2 Dimensional Materials

Buckyballs on gold are less exotic than graphene July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Graphene/ Graphite

Buckyballs on gold are less exotic than graphene July 22nd, 2022

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Materials/Metamaterials

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Energy

Generating power where seawater and river water meet July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

A novel graphene based NiSe2 nanocrystalline array for efficient hydrogen evolution reaction July 15th, 2022

Novel compound boosts urea to sustainable energy reaction process, researchers report: Integrating energy-saving hydrogen production with urea electrooxidation over crystalline-amorphous NiO-CrOx electrocatalyst July 15th, 2022

Solar/Photovoltaic

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022

Key in increasing efficiency of next-generation solar cell, found in ‘light absorption capacity’! July 1st, 2022

Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project