Home > Press > One-nanometer trimetallic alloy particles created
Abstract:
Background
The principal component of petroleum and natural gas are hydrocarbons and their mixtures, and are indispensable as resources supporting modern infrastructure as raw materials for the petrochemical industry. A technique which has been conventionally used to create beneficial chemical products from hydrocarbons was to use a large amount of metallic peroxides in hazardous organic solvents to oxidize hydrocarbon compounds. To use resources effectively and to reduce environmental impact, clean catalytic oxidization without solvents using the oxygen in the air has been a popular research subject in recent years. Research of noble metal nanoparticles supported on porous carbon materials or metallic oxides are especially prevalent, and they are viewed as promising catalysts. Vital elements determining the reactivity of such heterogeneous catalysts are the shape, size, and metallic composition of the metallic nanoparticles. Particles of a size less than 2 nm have especially gained attention in the development of new high-performance catalysts, since it has been found that reducing the diameter of the catalyst particle not only increases the surface area ratio but greatly changes the state of the electrons on the surface of the metals, greatly changing its reactivity. However, the method of synthesizing metallic nanoparticles of such a size while controlling both its diameter and composition had not been discovered.
Overview
The research group led by Kimihisa Yamamoto of Tokyo institute of Technology developed a method of synthesizing microscopic alloy nanoparticles using branched molecules "dendrimers" they themselves had developed in Yamamoto Atom Hybrid Project on the ERATO program, the Exploratory Research for Advanced Technology, research funding program supported by Japan Science and Technology Agency (JST). Molecules called dendrimers have a regular branching structure with only one definite molecular weight although they are classified as macromolecules. The research group implemented many coordination sites for forming metal ions and complexes. By using a dendrimer with such coordination sites as a template for the nanoparticle, the group was able to synthesize a nanoparticle with a controlled number of atoms.
Further, they evaluated the activity of this alloy nanoparticle as an oxidization catalyst for hydrocarbons under ordinary pressures when using oxygen in the air as the oxidizing agent, and found that its activity was 24 times greater than that of commercially available catalysts for oxidization of organic compounds. They also found that, by adding a catalytic amount of organic hydroperoxide, this catalyst promotes the oxidization of hydrocarbon into aldehydes and ketones under ordinary temperatures and pressures. Further, by comparing the changes in activity due to alloy catalysts of different metallic compositions and examining the composition and other characteristics of the intermediates, ketones and organic hydroperoxides, the group was able to observe the process of reaction promotion due to the alloying of the catalyst.
Future Development
The catalytic transformation of inactive hydrocarbons to substances with higher added value is a technology garnering much attention in recent times.?The knowledge gained from this research is anticipated to become a design guideline for new high-performance catalysts. The method for synthesizing alloy nanoparticles developed in this research can be used generally and applied to other metals. For this reason, this could be said to be the technology uncovering the reactivity of other microscopic alloy nanoparticles, whose catalytic performance had not been known. Further study is required on the increase of catalytic activity at the interface of copper and other noble metals in the oxidizing transformations of other organic compounds, not only the oxidization of hydrocarbons. Application is anticipated for next-generation high-performance materials in the fields as diverse as optics, electronics, and energy.
####
For more information, please click here
Contacts:
Emiko Kawaguchi
81-357-342-975
Copyright © Tokyo Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Self-driving microrobots December 10th, 2019
Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Chemistry
Self-driving microrobots December 10th, 2019
Govt.-Legislation/Regulation/Funding/Policy
Self-driving microrobots December 10th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Artificial cells act more like the real thing December 6th, 2019
Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019
Possible Futures
Self-driving microrobots December 10th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Artificial cells act more like the real thing December 6th, 2019
Discoveries
Artificial cells act more like the real thing December 6th, 2019
Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019
Growing nano-tailored surfaces using micellar brushes November 29th, 2019
Materials/Metamaterials
Toward more efficient computing, with magnetic waves: Circuit design offers a path to 'spintronic' devices that use little electricity and generate practically no heat November 29th, 2019
NAUM’19 reviewed the increasing contribution of graphene nanotubes to sustainable development November 21st, 2019
Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019
Disordered proteins become stable, 'super-sticky' materials: Improved protein control could lead to wound-healing gels and other applications November 3rd, 2019
Announcements
Self-driving microrobots December 10th, 2019
Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Self-driving microrobots December 10th, 2019
'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019
Artificial cells act more like the real thing December 6th, 2019
Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019
Energy
The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019
'Messy' production of perovskite material increases solar cell efficiency November 15th, 2019
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
A record-setting transistor: Engineering professor designs transistor that could enable cheaper, faster wireless communications November 29th, 2019
The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019
Large scale integrated circuits produced in printing press: All-printed large-scale integrated circuits based on organic electrochemical transistors November 15th, 2019
Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |