Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Living computers: RNA circuits transform cells into nanodevices

Ribonucleic acid (RNA) is used to create logic circuits capable of performing various computations. In new experiments, Green and his colleagues have incorporated RNA logic gates into living bacterial cells, which act like tiny computers.
CREDIT
Graphic by Jason Drees for the Biodesign Institute
Ribonucleic acid (RNA) is used to create logic circuits capable of performing various computations. In new experiments, Green and his colleagues have incorporated RNA logic gates into living bacterial cells, which act like tiny computers. CREDIT Graphic by Jason Drees for the Biodesign Institute

Abstract:
The interdisciplinary nexus of biology and engineering, known as synthetic biology, is growing at a rapid pace, opening new vistas that could scarcely be imagined a short time ago.

Living computers: RNA circuits transform cells into nanodevices

Tempe, AZ | Posted on July 27th, 2017

In new research, Alex Green, a professor at ASU's Biodesign Institute, demonstrates how living cells can be induced to carry out computations in the manner of tiny robots or computers.

The results of the new study have significant implications for intelligent drug design and smart drug delivery, green energy production, low-cost diagnostic technologies and even the development of futuristic nanomachines capable of hunting down cancer cells or switching off aberrant genes.

"We're using very predictable and programmable RNA-RNA interactions to define what these circuits can do," says Green. "That means we can use computer software to design RNA sequences that behave the way we want them to in a cell. It makes the design process a lot faster."

The study appears in the advance online edition of the journal Nature.

Designer RNA

The approach described uses circuits composed of ribonucleic acid or RNA. These circuit designs, which resemble conventional electronic circuits, self-assemble in bacterial cells, allowing them to sense incoming messages and respond to them by producing a particular computational output, (in this case, a protein).

In the new study, specialized circuits known as logic gates were designed in the lab, then incorporated into living cells. The tiny circuit switches are tripped when messages (in the form of RNA fragments) attach themselves to their complementary RNA sequences in the cellular circuit, activating the logic gate and producing a desired output.

The RNA switches can be combined in various ways to produce more complex logic gates capable of evaluating and responding to multiple inputs, just as a simple computer may take several variables and perform sequential operations like addition and subtraction in order to reach a final result.

The new study dramatically improves the ease with which cellular computing may be carried out. The RNA-only approach to producing cellular nanodevices is a significant advance, as earlier efforts required the use of complex intermediaries, like proteins. Now, the necessary ribocomputing parts can be readily designed on computer. The simple base-pairing properties of RNA's four nucleotide letters (A, C, G and U) ensure the predictable self-assembly and functioning of these parts within a living cell.

Green's work in this area began at the Wyss Institute at Harvard, where he helped develop the central component used in the cellular circuits, known as an RNA toehold switch. The work was carried out while Green was a post-doc working with nanotechnology expert Peng Yin, along with the synthetic biologists James Collins and Pamela Silver, who are all co-authors on the new paper. "The first experiments were in 2012," Green says. "Basically, the toehold switches performed so well that we wanted to find a way to best exploit them for cellular applications."

(The accompanying video demonstrates the basic principles of the RNA toehold switch.)

After arriving at ASU, Green's first grad student Duo Ma worked on experiments at the Biodesign Institute, while another postdoc, Jongmin Kim continued similar work at the Wyss Institute. Both are also co-authors of the new study.

Nature's Pentium chip

The possibility of using DNA and RNA, the molecules of life, to perform computer-like computations was first demonstrated in 1994 by Leonard Adleman of the University of Southern California. Since then, rapid progress has advanced the field considerably, and recently, such molecular computing has been accomplished within living cells. (Bacterial cells are usually employed for this purpose as they are simpler and easier to manipulate.)

The technique described in the new paper takes advantage of the fact that RNA, unlike DNA, is single stranded when it is produced in cells. This allows researchers to design RNA circuits that can be activated when a complementary RNA strand binds with an exposed RNA sequence in the designed circuit. This binding of complementary strands is regular and predictable, with A nucleotides always pairing with U and C always pairing with G.

With all the processing elements of the circuit made using RNA, which can take on an astronomical number of potential sequences, the real power of the newly described method lies in its ability to perform many operations at the same time. This capacity for parallel processing permits faster and more sophisticated computation while making efficient use of the limited resources of the cell.

Logical results

In the new study, logic gates known as AND, OR and NOT were designed. An AND gate produces an output in the cell only when two RNA messages A AND B are present. An OR gate responds to either A OR B, while a NOT gate will block output if a given RNA input is present. Combining these gates can produce complex logic capable of responding to multiple inputs.

Using RNA toehold switches, the researchers produced the first ribocomputing devices capable of four-input AND, six-input OR and a 12-input device able to carry out a complex combination of AND, OR and NOT logic known as disjunctive normal form expression. When the logic gate encounters the correct RNA binding sequences leading to activation, a toehold switch opens and the process of translation to protein takes place. All of these circuit-sensing and output functions can be integrated in the same molecule, making the systems compact and easier to implement in a cell.

The research represents the next phase of ongoing work using the highly versatile RNA toehold switches. In earlier work, Green and his colleagues demonstrated that an inexpensive, paper-based array of RNA toehold switches could act as a highly accurate platform for diagnosing the Zika virus. Detection of viral RNA by the array activated the toehold switches, triggering production of a protein, which registered as a color change on the array.

The basic principle of using RNA-based devices to regulate protein production can be applied to virtually any RNA input, ushering in a new generation of accurate, low-cost diagnostics for a broad range of diseases. The cell-free approach is particularly well suited for emerging threats and during disease outbreaks in the developing world, where medical resources and personnel may be limited.

The computer within

According to Green, the next stage of research will focus on the use of the RNA toehold technology to produce so-called neural networks within living cells -- circuits capable of analyzing a range of excitatory and inhibitory inputs, averaging them and producing an output once a particular threshold of activity is reached, much the way a neuron averages incoming signals from other neurons. Ultimately, researchers hope to induce cells to communicate with one another via programmable molecular signals, forming a truly interactive, brain-like network.

"Because we're using RNA, a universal molecule of life, we know these interactions can also work in other cells, so our method provides a general strategy that could be ported to other organisms," Green says, alluding to a future in which human cells become fully programmable entities with extensive biological capabilities.

####

For more information, please click here

Contacts:
Joe Caspermeyer

480-258-8972

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Organic Electronics

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Double perovskites in environmentally friendly solar cells: Long electron-hole diffusion length in high-quality lead-free double perovskite films April 6th, 2018

Non-toxic filamentous virus helps quickly dissipate heat generated by electronic devices April 4th, 2018

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Synthetic Biology

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Possible Futures

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Chip Technology

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Discoveries

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Nanobiotechnology

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project