Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data

Abstract:
Magnets and magnetic phenomena underpin the vast majority of modern data storage, and the measurement scales for research focused on magnetic behaviors continue to shrink with the rest of digital technology. Skyrmions, for example, are a kind of nanomagnet, comprised of a spin-correlated ensemble of electrons acting as a topological magnet on certain microscopic surfaces. The precise properties, like spin orientation, of such nanomagnets can store information. But how might you go about moving or manipulating these nanomagnets at will to store the data you want?

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data

Washington, DC | Posted on July 21st, 2017

New research from a German-U.S. collaboration now demonstrates such read/write ability using bursts of electrons, encoding topological energy structures robustly enough for potential data storage applications. As the group reports this week in Applied Physics Letters, from AIP Publishing, the magnetization of these ensemble excitations, or quasiparticles, is controlled by tailoring the profile of the electron pulses, varying either the total number of electrons or their width in space.

"The work shows how magnetization of nanoscale magnets can be steered by intense ultrashort electron pulses," said Alexander Schäffer, a doctoral student at Martin-Luther-Universität Halle-Wittenberg in Halle, Germany, and lead author of the paper. "Experiments at SLAC already demonstrated the ultimate speed limit of magnetic switching with this scheme. Here we show that tailored electron pulses can swiftly write, erase or switch topologically protected magnetic textures such as skyrmions."

So far, Schäffer says there are only a few realized applications of these skyrmions, which are relatively new to the forefront of solid state physics, but their properties and the current research capabilities make them ripe for next generation technologies.

"In the tradition of the field of spin dynamics in nanostructures, I still appreciate the idea of non-volatile (long-term) memory devices, as the community of spintronics is also pursuing," he said. "The nice interplay between the mathematical concept of topological energy barriers and the physical transport properties of skyrmions, which are highly mobile, are the outstanding aspects for me."

Not only are these magnetic excitations controllable, but the team's results confirm many of the dynamic understandings provided by theory. Moreover, their results demonstrate potential for achieving similar topological charge transcription by way of laser pulses, whose lower and mass-free energy offer a number of practical benefits.

"These quasiparticles are robust against external perturbations, and hence are usually difficult to manipulate, and have a high potential for applications in data storage and computing," Schäffer said. "I was positively surprised about the nice accordance between experiment, analytics and numerical results, which gave me a good feeling in continuing this path. A second point was the finding that textures can be written with much lower beam intensity using tightly focused electron pulses. This brings their technological exploitation within reach as the required high-energy ultrafast electron microscopy setup is currently being developed at SLAC and other places worldwide."

This significant step lends itself to many more in the evolution from this generation's cutting-edge research to next generation's hard drives. As they continue to build on their research, Schäffer and his collaborators are looking toward broader applicability in a number of ways.

"Further development in the setups is required to be able to write skyrmionic structures on extended films, where we can't make any profit of geometric confinements like in the nanodisks," Schäffer said. "The next steps are mani-fold. Of course, an experimental realization is what we strive for with our experimental colleagues, especially the question of how good the switching-behavior between different topological states can be covered by our calculations. A complete simulation of laser-irradiated TEM of magnetic samples is one of our big goals at the moments."

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org .

For more information, please click here

Contacts:
Julia Majors

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons," is authored by Alexander F. Schäffer, Hermann A. Durr and Jamal Berakdar. The article appeared in Applied Physics Letters July 18, 2017 (DOI: 10.1063/1.4991521). After that date, it can be accessed at:

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Magnetism

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Study resolves controversy about electron structure of defects in graphene December 21st, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Skyrmions

Fast-moving magnetic particles could enable new form of data storage: Recently discovered phenomenon could provide a way to bypass the limits to Moore's Law October 2nd, 2017

Bit data goes anti-skyrmions September 1st, 2017

The synchronized dance of skyrmion spins: Computer simulations reveal new insights into skyrmion particles, which are promising for next-generation information storage and processing devices May 30th, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Memory Technology

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Discoveries

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project