Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Semiliquid chains pulled out of a sea of microparticles

This is a chain of microparticles pulled out of the liquid by an electrode. (Source: IPC PAS)
CREDIT
Source: IPC PAS
This is a chain of microparticles pulled out of the liquid by an electrode. (Source: IPC PAS) CREDIT Source: IPC PAS

Abstract:
An electrode brought to the surface of a liquid that contains microparticles can be used to pull out surprisingly long chains of particles. Curiously enough, the particles in the chains are held together by a thin layer of liquid that covers them. This spectacular phenomenon, discovered with the involvement of Polish scientists and described in the prestigious journal Nature Communications, holds promise for a broad variety of applications.



Forming the colloidal chain. (Source: UAM)



Colloidal chain and the microparticle layer at the surface of the liquid. (Source: IPC PAS)

Semiliquid chains pulled out of a sea of microparticles

Warsaw, Poland | Posted on July 20th, 2017

An electrode slowly rises from the surface of a liquid, pulling out individual spherical particles that, just a moment before, were chaotically dispersed in a colloidal solution. A long, regular chain of microparticles thus forms above the surface of the liquid, in a previously unnoticed phenomenon. It was first observed, studied, and described by scientists from the Institute of Physical Chemistry at the Polish Academy of Sciences (IPC PAS), the Faculty of Physics of the Adam Mickiewicz University (UAM), the Northwestern University in Evanston (Illinois, USA), and the Faculty of Physics at the University of Warsaw.

"We've all probably seen our mothers or grandmothers wear necklaces made of beads strung on a thread. The chains of microparticles fabricated and studied by our team look very similar, but they are much smaller in size. However, the most interesting thing is the physics behind this process. The formation of these regular structures is determined by a set of phenomena that are by no means trivial, and the role of the thread that holds together the individual beads is played by... a liquid. What is more, in a necklace, the thread goes through the beads, while our thread, in this case the liquid, actually covers the microparticles," says Dr. Filip Dutka from the Faculty of Physics at the University of Warsaw.

"This phenomenon was discovered accidentally, during experiments conducted in the Institute of Physical Chemistry of the PAS," relays Dr. Zbigniew Rozynek, the lead author of the publication in the journal Nature Communications, currently employed at the Faculty of Physics at the Adam Mickiewicz University. "I used an electrode at several hundred volts to examine glass microspheres floating on the surface of oil. When I pulled out the electrode, I was surprised to see a long and very regular chain at its tip. When I examined it under the microscope, it turned out to have the thickness of a single particle."

The phenomenon visually resembles one of the most important modern-day technological processes - namely, Prof. Jan Czochralski's method of growing monocrystals - which involves slowly pulling a rod-mounted seed crystal out of molten material. Moreover, this method, which enables the fabrication of high-quality semiconductors for use in the electronics industry, was reportedly also discovered by accident. When writing notes, Prof. Czochralski absentmindedly dipped his pen in a crucible with cooling molten tin instead of dipping it in the inkpot. When attempting to pull out the pen, he noticed a tin filament at its tip that, on closer inspection, proved to be a monocrystal.

"The materials that are fabricated using Czochralski's method are crystals, so their structure is regular in all three dimensions. We create our structures using not atoms or molecules but microparticles arranged regularly along only one dimension. With a bit of leeway, we might therefore treat our chains as one-dimensional crystals," Dr. Rozynek says.

How can we form such a colloidal chain? We take a container with non-conductive liquid, add spherical and conductive particles, and mix them together. When we bring an electrode (for example, in the shape of a needle) to the surface of the suspension, one of the particles attaches to its tip and becomes an extension of the electrode, which happens because the particles conduct electricity. If we apply an adequate electric voltage, we will be able to pull such spheres out of the liquid one after another, thus forming a chain of particles covered with a thin layer of the liquid. Each pair of adjacent particles is held together by a liquid capillary bridge, forming stable electric contacts. Consequently, an electric current flows through the whole of the chain almost as efficiently as through a single particle, allowing the last particle to attract another particle from the solution.

"Hourglass-shaped capillary bridges can be found between each pair of adjacent spheres in the chain. Once the electric field is turned off, they play a crucial role: by holding the particles together, they keep the chain intact. Since the capillary bridges are simply composed of liquid, the chain is highly flexible," Dr. Dutka explains.

The chains of microparticles are formed as a result of complicated interactions of an electrical, gravitational, and capillary nature (related to the surface tension of the liquid). Here, gravity plays the role of a spoiler: if a chain gets too heavy, gravity will cut it like scissors. There is much to indicate that such chains could also be formed under zero gravity and could be then of practically any length.

"Once they form, the structures created from microparticles behave like chains: they are flexible, meaning they can be bent into various shapes. However, much depends on the type of liquid used. In some experiments, we pulled chains out of molten paraffin wax. Shortly after being pulled, the bridges would solidify and the structure would become rigid. There's also an intermediate option: if we blend, for example, resin and alcohol, the resin hardens as the alcohol evaporates. The chain is then a lot less flexible but not completely rigid," Dr. Rozynek observes.

The length of the colloidal chains depends on the number and weight of the microparticles, which is usually closely related to their size. The Polish scientists, supported by funding from the National Science Centre and the Foundation for Polish Science, conducted experiments for particles with diameters ranging from around 100 nanometers to 200 micrometers. Chains formed from micron-sized particles had up to several thousand elements and were up to several inches long.

Although the discovery was made very recently, it appears that the attractive properties of colloidal and granular chains will quickly find practical applications. Work is ongoing to apply the phenomenon to the production of thin conductive structures on substrates that vary in roughness and properties. Such structures could be used as elements in flexible circuits, among other applications. Potentially, such chains could also be formed from living cells, which opens the door to possible applications in biotechnology or even medicine.

####

About Faculty of Physics University of Warsaw
Physics and Astronomy first appeared at the University of Warsaw in 1816, under the then Faculty of Philosophy. In 1825 the Astronomical Observatory was established. Currently, the Faculty of Physics' Institutes include Experimental Physics, Theoretical Physics, Geophysics, Department of Mathematical Methods and an Astronomical Observatory. Research covers almost all areas of modern physics, on scales from the quantum to the cosmological. The Faculty's research and teaching staff includes ca. 200 university teachers, of which 88 are employees with the title of professor. The Faculty of Physics, University of Warsaw, is attended by ca. 1000 students and more than 170 doctoral students.

For more information, please click here

Contacts:
Dr. Filip Dutka
Faculty of Physics, University of Warsaw
tel.: +48 22 5532908


Dr. Zbigniew Rozynek
Faculty of Physics, Adam Mickiewicz University
tel.: +48 61 8295134

Copyright © Faculty of Physics University of Warsaw

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

SCIENTIFIC PAPERS:

Faculty of Physics, University of Warsaw:

Press office of the Faculty of Physics, University of Warsaw:

Related News Press

News and information

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Possible Futures

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

Chip Technology

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

Nanomedicine

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Discoveries

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Announcements

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Nanobiotechnology

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project