Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health

The research uses new gold nanotechnology and lasers to warm the embryo-the stumbling block in previous studies. The results have profound implications for human health, wildlife conservation, and aquaculture.
CREDIT
University of Minnesota/Smithsonian Conservation Biology Institute
The research uses new gold nanotechnology and lasers to warm the embryo-the stumbling block in previous studies. The results have profound implications for human health, wildlife conservation, and aquaculture. CREDIT University of Minnesota/Smithsonian Conservation Biology Institute

Abstract:
For more than 60 years, researchers have tried to successfully cryopreserve (or freeze) the embryo of zebrafish, a species that is an important medical model for human health. In a new study, researchers at the University of Minnesota and the Smithsonian Conservation Biology Institute (SCBI) provide the first-ever reproducible evidence for the successful cryopreservation of zebrafish embryos.

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health

Minneapolis, MN | Posted on July 15th, 2017

The study uses new gold nanotechnology and lasers to warm the embryo--the stumbling block in previous studies. The results have profound implications for human health, wildlife conservation, and aquaculture.

The research is published today in ACS Nano, a leading scientific journal published by the American Chemical Society.

"There's no doubt that the use of this technology, in this way, marks a paradigm shift for cryopreservation and the conservation of many wildlife species," said Mary Hagedorn, an SCBI research scientist and paper co-author who has been working on cryopreserving zebrafish embryos since 1992.

"To get anything to work at such cold temperatures, you usually have to get creative. Here we take a unique approach by combining biology with an exciting engineering technology to do what has been impossible previously: to successfully freeze and thaw a fish embryo so that the embryo begins to develop, rather than falls apart," Hagedorn added.

By freezing sperm, eggs and embryos, conservationists can safeguard at-risk species and their genetic diversity, making it possible to bolster the genetic pool and therefore health of wild populations years--or even centuries--later. Although scientists have successfully cryopreserved the embryos of many mammal species and the sperm of many species of fish, freezing fish embryos proved infinitely more complicated.

Successful cryopreservation of an embryo requires cooling the embryo to a cryogenically stable state, then warming it at a rate faster than it was cooled, and using an antifreeze (or cryoprotectant) to stop the growth of ice crystals, which are like pins in a balloon that pop the membrane and cause the embryo to fall apart. Fish embryos, however, are very large, making it difficult to thaw them quickly and avoid ice crystal development. In addition, because aquatic animals need to survive harsh environments, their embryonic membranes are mostly impenetrable, blocking the cryoprotectants out.

Enter laser gold nanotechnology, a rapidly growing technological field being developed for cryopreservation applications by University of Minnesota Mechanical Engineering John Bischof that was critical for the success of the study and has a wide variety of biomedical applications.

"Lasers have the exciting ability to act like a "light switch" that can turn biological activity on and off within gold nanoparticle laden biomaterials," said Bischof, senior author of the study. "In this case, by careful engineering and deployment of gold nanoparticles within a cryogenically stored and biological inactive embryo, we can use a laser pulse to quickly warm the embryo back to ambient temperatures and switch biological activity, and therefore life, back on."

Gold nanorods are tiny cylinders of gold that convert absorbed light (from a laser, for example) into heat. The study's authors injected both the cryoprotectant and nanogold particles into the embryos. The gold particles transferred heat uniformly throughout the embryo when hit with a laser, warming the embryo from -196 degrees C to 20 degrees C in just one thousandth of a second. The amazingly fast warming rate, in combination with the cryoprotectant, prevented the formation of lethal ice crystals.

Embryos that underwent this process went on to develop at least to the 24-hour stage where they developed a heart, gills, tail musculature and moved--proving their post-thaw viability.

The study's authors next aim to fine-tune the process to ensure that they can increase the survival rate of the embryos. They will also investigate the use of automation to bolster how many embryos they can successfully thaw at once.

Because the embryos of other aquatic animals--fish, amphibians and coral--are very similar to those of zebrafish, this technology is directly applicable to the cryopreservation of many species' embryos. The technology may also be customized to cryopreserve reptile and bird embryos and enhance the process of cryopreserving mammalian embryos, including giant pandas and large cats. In addition, the technology can help aquaculture farms become more efficient and cost effective, putting less pressure on wild populations.

Human health researchers use zebrafish--which have a genome similar to that of humans--as important disease models to study melanoma, heart disease and blood disorders, among other health issues. Cryopreserved zebrafish embryos will prevent the scientists from losing entire research lines and will give them the flexibility to bring the lines back as needed.

###

In addition to Hagedorn and Bischof, the lead authors of the paper are University of Minnesota Ph.D. students Kanav Khosla and Yiru Wang with help from former University of Minnesota Ph.D. student Zhenpeng Qin.

####

For more information, please click here

Contacts:
Rhonda Zurn

612-626-7959

Copyright © University of Minnesota

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

To read the full research paper, visit the ACS Nano website:

Related News Press

News and information

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Possible Futures

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Nanomedicine

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Discoveries

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Announcements

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Environment

This new nanotech could help clean up Earth’s microplastics August 3rd, 2019

Black (nano)gold combat climate change July 5th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Nanobiotechnology

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Photonics/Optics/Lasers

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

RIT awarded NSF funding to conceptualize Quantum Photonic Institute: RIT will develop plan for open-access Quantum Foundry for quantum photonic circuits August 7th, 2019

Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth July 29th, 2019

Technologies for the Sixth Generation Cellular Network: Ultra-rapid Electro-optical Modulators Convert Terahertz into Optical Data Signals - Publication in Nature Photonics July 25th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project