Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells

Image: Veer
Image: Veer

Abstract:
In view of climate change and the needs of the energy reform, it has become particularly important to significantly increase the efficiency of organic solar cells. In a process known as 'singlet fission', one photon simultaneously excites two electrons. If this effect can be exploited, it may well be possible to dramatically increase the power generated by solar cells. Physicists and chemists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) collaborating in an international joint project with Northwestern University in the USA have successfully worked out all the decisive intermediate phases in the singlet fission process and have managed to describe the mechanism in detail for the first time. The results have been published in the leading specialist journal Nature Communications (DOI: 10.1038/ncomms15171).

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells

Nürnberg, Germany | Posted on July 12th, 2017

Molecules that are stimulated by light reach a higher level of excitation; this means that the corresponding energy can be used in organic solar cells to generate an electric current. When a light particle collides with and is absorbed by a molecule, it is possible that the surplus energy created in that one molecule could stimulate an electron in a second molecule in its immediate vicinity. As a result, both these molecules would contain an electron in a higher state of excitation. This process is called singlet fission (SF) and it could, in a best-case scenario, lead to a 50% increase in solar cell performance. However, the generated energy is not retained by molecules for ever and the molecules will eventually return to their former state. The principle behind SF has been known for 50 years, but its exact mechanism is still not fully understood. That is why the researchers based in Erlangen have closely analysed every intermediate phase between molecule stimulation and return to original state.

Two methods employed to identify individual phases

Working together with international researchers, the team at FAU under Prof. Dr. Dirk M. Guldi (holder of the Chair of Physical Chemistry I) used two different methods to identify the individual phases. As all processes that occur inside a molecule after its excitation take place at very high speeds, spectroscopic methods have to be employed to provide time-resolved insights into the individual phases following stimulation.

Using spectroscopy, the researchers first looked at how the absorption properties of molecules changed during the deactivation phase. Certain transitional phases known as intermediates leave behind 'fingerprints' that allow these to be clearly identified. Some intermediates, however, have identical absorption properties, which is why it is necessary to use a second method for analysis - in this case electron spin resonance spectroscopy. This is because some of the intermediates differ with regard to the spin of their stimulated electrons. By using these two methods in tandem, the FAU team successfully managed to identify all of the intermediates and develop a standardised model of what happens in SF. The researchers hope the results of their work will make it possible to take a more targeted approach to molecule design that in turn will make feasible the production a solar cell that operates on the basis of the singlet fission principle.

####

For more information, please click here

Contacts:
Prof. Dr. Dirk M. Guldi

Copyright © Universität Erlangen-Nürnberg

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Organic Electronics

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Possible Futures

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Discoveries

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Announcements

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project