Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano

Abstract:
Method and System for Continuous Atomic Layer Deposition on Powders and Moving Beds Strengthens Forge Nano’s Intellectual Property Rights Portfolio for their High Throughput Atomic Layer Deposition Technology

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano

Louisville, CO | Posted on July 7th, 2017

Argonne National Laboratory has entered into an exclusive license agreement with Forge Nano to commercialize Argonne’s patented system and method for continuous atomic layer deposition. This license enhances Forge Nano’s ability to offer and protect key intellectual property rights for its customers across an even broader array of strategic markets.

Forge Nano’s innovative manufacturing systems are industrializing the Atomic Layer Deposition (ALD) process by offering a unique value proposition toward upgrading material performance for wide-ranging applications. ALD is a process that deposits a uniform and ultrathin encapsulating coating around any material. The process can used to upgrade many materials, such as powders utilized in energy storage applications (lithium-ion batteries, fuel cells, ultracapacitors, etc.), as well as many non-energy applications as well. ALD allows for coating thicknesses down to Angstroms (1/100,000th the thickness of a human hair). Such control allows for the application of coatings that are thick enough to eliminate unwanted reactions that cause degradation within energy storage systems or moisture-sensitive materials, yet thin enough to not adversely affect desirable material properties. ALD coatings are by far the most compelling coating solution for eliminating capacity fade and enabling higher overall performance and safety in batteries. ALD is a process that has existed for decades with hundreds of publications demonstrating its capability as a process to improve material properties for a wide variety of applications. However, due to a lack of manufacturing innovation, it has remained a lab-scale process utilized primarily by academics. Forge Nano has developed, patented and successfully demonstrated a high-throughput process for applying ALD, which reduces the overall cost of energy storage devices while improving their performance and safety.

Forge Nano has scaled a proprietary coating technology that delivers high-value improvements to the longevity, safety and cost of Lithium-Ion batteries. Forge Nano’s coatings can increase cathode material lifetimes more than 250% while enabling higher capacity Nickel-rich battery chemistries. Forge Nano is also demonstrating similar gains to anode materials such as conventional graphite and emerging silicon-based materials. Forge Nano’s comprehensive IP portfolio for ALD-enabled battery materials is enabling higher energy densities, longer lifetimes, and faster charge rates, all while reducing cost for our expanding customer base. Forge Nano materials are enabling battery manufacturers to build a much better, safer battery at a lower price.

Other applications that benefit from Forge Nano’s ALD coated materials include shale gas or petrochemical catalysts, solid oxide fuel cells, non-Lithium-ion battery energy storage systems such as supercapacitors and conventional fuel cells, and many other applications that benefit from the adoption of low-cost, corrosion-resistant materials.

Forge Nano maintains the world’s largest manufacturing capacity for ALD-enabled materials, and has recently commissioned a 300 ton per year light commercial production plant, increasing its coating capacity ten-fold. This plant is capable of meeting demand volumes and price points for large-scale integration into the Li-ion market. Meanwhile the company is currently designing and constructing a 3,000 ton per year heavy commercial production plant scheduled to come online in early 2018.

####

About Forge Nano
Based in Louisville, Colo., Forge Nano, previously known as PneumatiCoat Technologies, is a global leader in surface engineering and precision nano-coating technology. Forge Nano’s proprietary technology and manufacturing processes make angstrom-thick coatings fast, affordable and commercially viable for a wide range of materials, applications and industries including handling and coating air-sensitive materials found in Li-ion batteries, nanoscale metal powders for electrodes used in electronic devices, hygroscopic halide-based materials, and many others.

For more information, please click here

Contacts:
Joy Meadows
Meadows Public Relations

303.522.9045

Copyright © Forge Nano

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Supersonic waves may help electronics beat the heat May 18th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

News and information

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Elastic microspheres expand understanding of embryonic development and cancer cells May 15th, 2018

Chemistry

A micro-thermometer to record tiny temperature changes May 15th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Possible Futures

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Announcements

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Patents/IP/Tech Transfer/Licensing

Leti Silicon Photonics Design Kit Available in Synopsis OptoDesigner Suite: Kit Contains Design Rules and Building Blocks for Multi-Project Wafers And Custom Runs on Leti’s Si310 Platform April 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Energy

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

A designer's toolkit for constructing complex nanoparticles May 5th, 2018

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Mining for gold with a computer: Texas A&M team gleans new insights on key material May 3rd, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Ultra-powerful batteries made safer, more efficient: Team aims to curb formation of harmful crystal-like masses in lithium metal batteries April 12th, 2018

CAP-XX Develops Industry’s First 3 Volt Thin Prismatic Supercapacitors: Provides peak power support to 3V coin cell batteries and eliminates need for 2.7V LDO regulator for less expensive, smaller, more energy-efficient designs with extended battery life April 11th, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project