Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano

Abstract:
Method and System for Continuous Atomic Layer Deposition on Powders and Moving Beds Strengthens Forge Nano’s Intellectual Property Rights Portfolio for their High Throughput Atomic Layer Deposition Technology

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano

Louisville, CO | Posted on July 7th, 2017

Argonne National Laboratory has entered into an exclusive license agreement with Forge Nano to commercialize Argonne’s patented system and method for continuous atomic layer deposition. This license enhances Forge Nano’s ability to offer and protect key intellectual property rights for its customers across an even broader array of strategic markets.

Forge Nano’s innovative manufacturing systems are industrializing the Atomic Layer Deposition (ALD) process by offering a unique value proposition toward upgrading material performance for wide-ranging applications. ALD is a process that deposits a uniform and ultrathin encapsulating coating around any material. The process can used to upgrade many materials, such as powders utilized in energy storage applications (lithium-ion batteries, fuel cells, ultracapacitors, etc.), as well as many non-energy applications as well. ALD allows for coating thicknesses down to Angstroms (1/100,000th the thickness of a human hair). Such control allows for the application of coatings that are thick enough to eliminate unwanted reactions that cause degradation within energy storage systems or moisture-sensitive materials, yet thin enough to not adversely affect desirable material properties. ALD coatings are by far the most compelling coating solution for eliminating capacity fade and enabling higher overall performance and safety in batteries. ALD is a process that has existed for decades with hundreds of publications demonstrating its capability as a process to improve material properties for a wide variety of applications. However, due to a lack of manufacturing innovation, it has remained a lab-scale process utilized primarily by academics. Forge Nano has developed, patented and successfully demonstrated a high-throughput process for applying ALD, which reduces the overall cost of energy storage devices while improving their performance and safety.

Forge Nano has scaled a proprietary coating technology that delivers high-value improvements to the longevity, safety and cost of Lithium-Ion batteries. Forge Nano’s coatings can increase cathode material lifetimes more than 250% while enabling higher capacity Nickel-rich battery chemistries. Forge Nano is also demonstrating similar gains to anode materials such as conventional graphite and emerging silicon-based materials. Forge Nano’s comprehensive IP portfolio for ALD-enabled battery materials is enabling higher energy densities, longer lifetimes, and faster charge rates, all while reducing cost for our expanding customer base. Forge Nano materials are enabling battery manufacturers to build a much better, safer battery at a lower price.

Other applications that benefit from Forge Nano’s ALD coated materials include shale gas or petrochemical catalysts, solid oxide fuel cells, non-Lithium-ion battery energy storage systems such as supercapacitors and conventional fuel cells, and many other applications that benefit from the adoption of low-cost, corrosion-resistant materials.

Forge Nano maintains the world’s largest manufacturing capacity for ALD-enabled materials, and has recently commissioned a 300 ton per year light commercial production plant, increasing its coating capacity ten-fold. This plant is capable of meeting demand volumes and price points for large-scale integration into the Li-ion market. Meanwhile the company is currently designing and constructing a 3,000 ton per year heavy commercial production plant scheduled to come online in early 2018.

####

About Forge Nano
Based in Louisville, Colo., Forge Nano, previously known as PneumatiCoat Technologies, is a global leader in surface engineering and precision nano-coating technology. Forge Nano’s proprietary technology and manufacturing processes make angstrom-thick coatings fast, affordable and commercially viable for a wide range of materials, applications and industries including handling and coating air-sensitive materials found in Li-ion batteries, nanoscale metal powders for electrodes used in electronic devices, hygroscopic halide-based materials, and many others.

For more information, please click here

Contacts:
Joy Meadows
Meadows Public Relations

303.522.9045

Copyright © Forge Nano

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

Chemistry

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Carbon displays quantum effects July 13th, 2017

Laboratories

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

News laser design offers more inexpensive multi-color output: Design can control color, intensity of light by varying cavity architecture July 11th, 2017

Brookhaven Scientists Study Role of 'Electrolyte Gating' in Functional Oxide Materials July 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Possible Futures

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Announcements

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Patents/IP/Tech Transfer/Licensing

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Energy

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Making two out of one: FAU researchers have explained the mechanism behind a process that can increase the efficiency of organic solar cells July 12th, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nanotech Advances Future Mobile Devices and Wearable Technology July 5th, 2017

Nanostructures taste the rainbow: Combining nanophotonics and thermoelectrics, engineers at Caltech generate materials capable of distinguishing between tiny differences in wavelengths of light June 30th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Fuel Cells

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers June 5th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project