Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Electrocatalyst nanostructures key to improved fuel cells, electrolyzers

Abstract:
Stabilization of ultrathin (hydroxy)oxide films on transition metal substrates for electrochemical energy conversion
Zhenhua Zeng1, Kee-Chul Chang2, Joseph Kubal1, Nenad M. Markovic2 and Jeffrey Greeley1
1 School of Chemical Engineering, Purdue University, West Lafayette, Indiana
2 Materials Science Division, Argonne National Laboratory, Argonne, Illinois
Design of cost-effective electrocatalysts with enhanced stability and activity is of paramount importance for the next generation of energy conversion systems, including fuel cells and electrolysers. However, electrocatalytic materials generally improve one of these properties at the expense of the other. Here, using density functional theory calculations and electrochemical surface science measurements, we explore atomic-level features of ultrathin (hydroxy)oxide films on transition metal substrates and demonstrate that these films exhibit both excellent stability and activity for electrocatalytic applications. The films adopt structures with stabilities that significantly exceed bulk Pourbaix limits, including stoichiometries not found in bulk and properties that are tunable by controlling voltage, film composition, and substrate identity. Using nickel (hydroxy)oxide/Pt(111) as an example, we further show how the films enhance activity for hydrogen evolution through a bifunctional effect. The results suggest design principles for this class of electrocatalysts with simultaneously enhanced stability and activity for energy conversion.

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers

West Lafayette, IN | Posted on June 5th, 2017

Purdue University scientists' simulations have unraveled the mystery of a new electrocatalyst that may solve a significant problem associated with fuel cells and electrolyzers.

Fuel cells, which use chemical reactions to produce energy, and electrolyzers, which convert energy into hydrogen or other gases, use electrocatalysts to promote chemical reactions. Electrocatalysts that can activate such reactions tend to be unstable because they can corrode in the highly acidic or basic water solutions that are used in fuel cells or electrolyzers.

A team led by Jeffrey Greeley, an associate professor of chemical engineering, has identified the structure for an electrocatalyst made of nickel nanoislands deposited on platinum that is both active and stable. This design created properties in the nickel that Greeley said were unexpected but highly beneficial.

"The reactions led to very stable structures that we would not predict by just looking at the properties of nickel," Greeley said. "It turned out to be quite a surprise."

Greeley's team and collaborators working at Argonne National Laboratory had noticed that nickel placed on a platinum substrate showed potential as an electrocatalyst. Greeley's lab then went to work to figure out how an electrocatalyst with this composition could be both active and stable.

Greeley's team simulated different thicknesses and diameters of nickel on platinum as well as voltages and pH levels in the cells. Placing nickel only one or two atomic layers in thickness and one to two nanometers in diameter created the conditions they wanted.

"They're like little islands of nickel sitting on a sea of platinum," Greeley said.

The ultra-thin layer of nickel is key, Greeley said, because it's at the point where the two metals come together that all the electrochemical activity occurs. And since there are only one or two atomic layers of nickel, almost all of it is reacting with the platinum. That not only creates the catalysis needed, but changes the nickel in a way that keeps it from oxidizing, providing the stability.

Collaborators at Argonne then analyzed the nickel-platinum structure and confirmed the properties Greeley and his team expected the electrocatalyst to have.

Next, Greeley plans to test similar structures with different metals, such as replacing platinum with gold or the nickel with cobalt, as well as modifying pH and voltages. He believes other more stable and active combinations may be found using his computational analysis.

###

The U.S. Department of Energy supported the research. The research was published in May by the journal Nature Energy.

####

For more information, please click here

Contacts:
Writer: Brian Wallheimer: 765-532-0233,
Contact: Jim Bush, 765-494-2077,
Source: Jeffrey Greeley, 765-494-1282,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Chemistry

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Argonne collaborates to review current battery recycling processes for electric vehicles November 8th, 2019

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Possible Futures

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Discoveries

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Materials/Metamaterials

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Disordered proteins become stable, 'super-sticky' materials: Improved protein control could lead to wound-healing gels and other applications November 3rd, 2019

Physicists found weak spots in ceramic/graphene composites: Physicists found out the structures in nanomaterials made of ceramic and graphene plates, in which cracks appear most frequently September 27th, 2019

Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide September 27th, 2019

Announcements

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Fuel Cells

Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Current generation via quantum proton transfer February 1st, 2019

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project