Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers develop transistors that can switch between two stable energy states

University of Illinois engineer Milton Feng and his team have introduced an upgrade to transistor lasers that could boost computer processor speeds.

Photo by L. Brian Stauffer
University of Illinois engineer Milton Feng and his team have introduced an upgrade to transistor lasers that could boost computer processor speeds. Photo by L. Brian Stauffer

Abstract:
Engineers are unveiling an upgrade to the transistor laser that could be used to boost computer processor speeds – the formation of two stable energy states and the ability to switch between them quickly.

Researchers develop transistors that can switch between two stable energy states

Champaign, IL | Posted on May 9th, 2017

Modern computers are limited by a delay formed as electrons travel through the tiny wires and switches on a computer chip. To overcome this electronic backlog, engineers would like to develop a computer that transmits information using light, in addition to electricity, because light travels faster than electricity.

Having two stable energy states, or bistability, within a transistor allows the device to form an optical-electric switch. That switch will work as the primary building block for development of optical logic – the language needed for future optical computer processors to communicate, said Milton Feng, the Nick Holonyak Jr. Emeritus Chair in electrical and computer engineering and the team lead in a recent study.

“Building a transistor with electrical and optical bistability into a computer chip will significantly increase processing speeds,” Feng said, “because the devices can communicate without the interference that occurs when limited to electron-only transistors.”

In the latest study, the researchers describe how optical and electrical bistable outputs are constructed from a single transistor. The addition of an optical element creates a feedback loop using a process called electron tunneling that controls the transmission of light. The team published its results in the Journal of Applied Physics.

Feng said the obvious solution to solving the bottleneck formed by big data transfer – eliminating the electronic data transmission of the transistor and use all optics – is unlikely to happen.

“You cannot remove electronics entirely because you need to plug into a current and convert that into light,” Feng said. “That’s the problem with the all-optical computer concept some people talk about. It just is not possible because there is no such thing as an all-optical system.”

Feng and Holonyak, the Bardeen Emeritus Chair in electrical and computer engineering and physics, in 2004 discovered that light – previously considered to be a byproduct of transistor electronics – could be harnessed as an optical signal. This paved the way for the development of the transistor laser, which uses light and electrons to transmit a signal.

The new transistor could enable new devices and applications that have not been possible with traditional transistor technology.

“This is a single device that provides bistability for both electrical and optical functions with one switch,” Feng said. “It is totally new, and we are working hard to find more new applications for the device.”

Feng and his team have demonstrated electro-optical bistability at -50 degrees Celsius. The next step will be to prove that the device can work at room temperature. Feng said that they recently achieved this milestone, and the details will be published in an upcoming report.

“Any electronic device is virtually useless if it can’t operate at room temperature,” Feng said. “Nobody wants to carry a device in a refrigerator to keep it from getting too hot!”

The U. of I. department of electrical and computer engineering supported this research.

####

For more information, please click here

Contacts:
Lois E Yoksoulian
Physical Sciences Editor
217-244-2788


Milton Feng
217-333-8080;

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Electro-optical hysteresis and bistability in the ring-cavity tunneling-collector transistor laser” is available online:

Related News Press

News and information

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Possible Futures

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Chip Technology

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX® to Extend Its FD-SOI Platform and Technology Leadership : GF’s FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Optical computing/Photonic computing

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Discoveries

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Announcements

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Photonics/Optics/Lasers

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Ocean Optics Grows Sales Organization with Executive Appointments: Henry Langston promoted, Christine Stannard joins spectral sensing product developer December 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project