Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves

The orange and yellow stripes in this composite image depict matter waves from different experimental runs in the Hulet Lab at Rice University. The stripes show how matter waves change due to rapid magnetic shifts that bring about modulational instability. The left line shows a matter wave before magnetic switching. Subsequent images (to left) show how both repulsive to attractive fluctuations become amplified in the wave. Clear signs of deviations from the initial solid shape can be seen in the third image, and the peaks and valleys in the far left image show how the wave morphs into a "soliton train," a set of standing waves. (Image courtesy of J. Nguyen/Rice University)
The orange and yellow stripes in this composite image depict matter waves from different experimental runs in the Hulet Lab at Rice University. The stripes show how matter waves change due to rapid magnetic shifts that bring about modulational instability. The left line shows a matter wave before magnetic switching. Subsequent images (to left) show how both repulsive to attractive fluctuations become amplified in the wave. Clear signs of deviations from the initial solid shape can be seen in the third image, and the peaks and valleys in the far left image show how the wave morphs into a "soliton train," a set of standing waves. (Image courtesy of J. Nguyen/Rice University)

Abstract:
By precisely controlling the quantum behavior of an ultracold atomic gas, Rice University physicists have created a model system for studying the wave phenomenon that may bring about rogue waves in Earth's oceans.

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves

Houston, TX | Posted on April 27th, 2017

The research appears this week in Science. The researchers said their experimental system could provide clues about the underlying physics of rogue waves -- 100-foot walls of water that are the stuff of sailing lore but were only confirmed scientifically within the past two decades. Recent research has found rogue waves, which can severely damage and sink even the largest ships, may be more common than previously believed.

"We are interested in how self-attracting waves develop," said lead scientist Randy Hulet, Rice's Fayez Sarofim Professor of Physics and Astronomy. "Although our experiment is in the quantum domain, the same physics applies to classical waves, including rogue water waves."

Hulet's lab uses lasers and magnetic traps to cool tiny clouds of an atomic gas to less than one-millionth of a degree above absolute zero, temperatures far colder than the deepest reaches of outer space. At this extreme, quantum mechanical effects take center stage. Atoms can be made to march in lockstep, momentarily vanish or pair up like electrons in superconductors. In 2002, Hulet's team created the first "soliton trains" in ultracold atomic matter. Solitons do not diminish, spread out or change shape as they move. In 2014, Hulet and colleagues showed that two matter wave solitons traveling in opposite directions in a trap would briefly wink out of existence rather than share space as they passed through one another.

Both the 2002 and 2014 findings were remarkably similar to the behavior observed in water wave solitons in a canal in the mid-19th century by Scottish engineer John Scott Russell. He never lost his fascination with solitons and built a model canal in the garden behind his house to study them. For example, he was the first to show that two of the waves moving in opposite directions would pass through one another without interaction.

Mathematically, solitons are the result of a nonlinear attraction, one where the inputs have a disproportionate effect on the output. And any wave-based nonlinear system -- be it waves of water in the deep ocean or waves of ultracold atoms in a trap -- is subject to this and other universal nonlinear effects.

In the latest experiments, Hulet, research scientist Jason Nguyen and graduate student De "Henry" Luo used repulsive interactions to create a cigar-shaped matter wave known as a Bose-Einstein condensate. By rapidly switching the interactions to be attractive, the researchers caused the gas to undergo a "modulational instability," a nonlinear effect in which small, random perturbations in the system become amplified.

"The conditions pick out which perturbations are amplified," said Nguyen, the lead author of the new paper. "When this happens, the Bose-Einstein condensate will divide into a train of individual solitons separated by discrete spaces."

The resulting soliton train is what Hulet's team first created in 2002, but Luo said the new study is the first to experimentally probe the underlying physics of the system to determine whether the structure of a soliton train derives from the starting conditions or evolves dynamically as the system reacts to those conditions. Nguyen, Luo and Hulet were able to answer this question by systematically varying the conditions in their experiments and taking snapshots of the soliton trains every two milliseconds throughout the experiment.

"What we found was that under certain conditions, the number of solitons remains unchanged," Luo said. "This is evidence that the soliton train is born with the characteristics to be stable rather than evolving into such a stable structure over time."

In more than one study over the past decade, physicists and mathematicians have tried to describe the behavior of rogue waves using mathematics that are similar to that used to describe quantum systems, and Hulet said ultracold atomic experiments provide an ideal platform to test new theories about rogue wave dynamics.

"Recreating the precise conditions that bring about a rogue soliton wave in the ocean is going to be difficult, even in a large wave tank," Hulet said. "People are trying to do that, but we can gain insight into the formation of solitons by studying their formation in the quantum, rather than classical, regime."

The research was supported by the National Science Foundation, the Welch Foundation, the Army Research Office Multidisciplinary University Research Initiative and the Office of Naval Research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The DOI of the Science Advances paper is: 10.1126/science.aal3220

More information about the Hulet Lab:

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Military

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project